Refine Your Search




Search Results


Self Propelled Sweepers and Scrubbers Battery Run-Time

This SAE standard applies to all electric battery-powered machines that fall within the scope of SAE J2130. Purpose To define a uniform method of determining the time a battery-powered machine will continue operating normally with a given set of batteries.

Energy Harvesting/Regeneration for Electric Vehicles Land, Water & Air 2015-2025

The electric vehicle industry - land, water and air - is rapidly rising to become a market of over $533 billion by 2025. Some run entirely on harvested energy as with solar lake boats. Others recycle energy as with regenerative braking of cars, buses and military vehicles harvesting kinetic energy. Others use different forms of harvesting either to charge the traction batteries, or to drive autonomous device. In some cases, harvesting is making completely new forms of electric vehicle possible such as "glider" Autonomous Underwater Vehicles (AUVs) that can stay at sea for years, gaining electricity from both wave power and sunshine. Multiple forms of energy harvesting on one vehicle are becoming more common from cars to superyachts.

Ready Mixed Concrete Truck Recommended Practice

This recommended practice is applicable to the construction, reconstruction, and modification, of ready-mixed concrete trucks. This RP is not mandatory but is a consensus of industry best practices. It is not intended to override or replace OEM vehicle specifications, existing government regulations and other sources that are related to this RP.
SAE MOBILUS Subscription

Wiley Automotive Collection

Purchasable as an annual subscription, the Wiley Automotive Collection contains 20 eBook titles and focuses on a wide range of categories, including engines, transmission, chassis, body, electrical, safety, and manufacturing. Titles covering new and emerging topics such as battery technology and electric and hybrid vehicles are included as well, making the series an essential addition to any institution’s automotive resources.
SAE MOBILUS Subscription

Wiley SAE MOBILUS® eBook Package

Committed to being the primary source for aerospace and ground vehicle engineering resources, SAE International has added the full compilation of our Wiley eBook collections to the SAE MOBILUS® technical resource platform. Purchasable as an annual subscription and containing the titles from the Wiley Aerospace Collection, the Wiley Automotive Collection, the Wiley Computer Systems Collection, and the Wiley Cyber Security Collection.

Thermal Flow Control Valve Nomenclature and Application

The purpose of this SAE Information Report is to define common industry terminology and nomenclature relative to thermal flow control valves and to describe common thermal flow control valve applications in automotive, highway truck, mobile construction equipment, and industrial applications. This document is primarily directed at internal combustion engine or electric powered applications and the downstream systems to which power is provided, such as transmissions, hydraulics, air compression, etc. The information contained herein does not constitute an SAE Standard.
Technical Paper

Sealed Lead-Acid Battery for Agricultural Equipment Use

Conventional automotive batteries have been used in agricultural equipment. However, these batteries do not necessarily respond to what the user actually needs. The following complaints are often heard: * Engines do not start after long-term off-season storage. * Inconvenient services, such as recharging, are required. * These heavy batteries have no place to hold on to and is hard to carry. These problems occur simply because regular automotive batteries are applied. To create a truly appropriate battery for this application, some extensive study of actual use of batteries in agricultural equipment have been conducted. A sealed maintenance-free battery that is perfectly suited to this application, requires no service maintenance work, and results in no messy acid leakage was developed.
Technical Paper

Plug-and-Play Software Architecture to Support Automated Model-Based Control Process

To reduce development time and introduce technologies to the market more quickly, companies are increasingly turning to Model-Based Design. The development process - from requirements capture and design to testing and implementation - centers around a system model. Engineers are skipping over a generation of system design processes based on hand coding and instead are using graphical models to design, analyze, and implement the software that determines machine performance and behavior. This paper describes the process implemented in Autonomie, a plug-and-play software environment, to evaluate a component hardware in an emulated environment. We will discuss best practices and show the process through evaluation of an advanced high-energy battery pack within an emulated plug-in hybrid electric vehicle.
Technical Paper

Development of a Method for the Long-Term Efficiency and Cost Evaluation of Mobile Idle-Reduction Technologies (MIRT)

The heavy-duty truck industry has adopted various methods and technologies to provide comfort in sleeper cabins during rest periods. For heating a sleeper cabin the fuel-operated heating technology has been used already industry wide, due to performance, ecological, and economical reasons. The same criteria apply to the comfort requirements in the summer or in warmer climate. One of the most common methods is still the idling of the main truck engine. While engine idling increases both fuel consumption and emissions, it is also having a negative effect on the engine and exhaust system maintenance, especially with the latest changes of the emission regulation and the application of active and passive Diesel Particulate Filter (DPF) regeneration strategies.
Technical Paper

Study on Automated Mechanical Transmission and Method of Parameter Optimization Design for Hybrid Electric Bus

The hybrid electric city bus, which consists of the electric motor and battery, is obviously different from the traditional buses. This paper focuses on optimizing the characteristics of the automatic mechanical transmission in hybrid electric city bus and does the following studies: firstly, in order to reduce the fuel consumption, the transmission ratio and some structural parameters are optimized with CRUISE software; secondly, the volume and weight of the transmission structure is reduced and optimized by numerical optimization approach, with the limitation of the structural reliability.
Technical Paper

Evaluation of Class 7 Diesel-Electric Hybrid Trucks

The objectives of this project were to evaluate the reduction in fuel consumption and greenhouse gas (GHG) emissions made possible by hybrid technology, and to identify good driving habits with this type of vehicle. Two diesel-electric hybrid pick-up and delivery trucks and one diesel-electric hybrid utility vehicle equipped with an electric driven PTO (power take-off) system were included in the project. The first phase was the evaluation in actual operating conditions. Onboard computers were installed in the vehicles to record parameters that make it possible to determine driving habits. Based on operational data, specific duty cycles were built and track tests were conducted to measure the fuel consumption on these duty cycles. It was therefore possible to compare the hybrid trucks with other diesel trucks featuring similar characteristics. The delivery hybrid trucks showed up to 34% fuel savings during the track tests.
Technical Paper

Innovative Dense Lightweight Design for On-Board Hydrogen Storage Tank

The hydrogen economy envisioned in the future requires safe and efficient means of storing hydrogen fuel for either use on-board vehicles, delivery on mobile transportation systems or high-volume storage in stationary systems. The main emphasis of this work is placed on the high -pressure storing of gaseous hydrogen on-board vehicles. As a result of its very low density, hydrogen gas has to be stored under very high pressure, ranging from 350 to 700 bars for current systems, in order to achieve practical levels of energy density in terms of the amount of energy that can be stored in a tank of a given volume. This paper presents 3D finite element analysis performed for a composite cylindrical tank made of 6061-aluminum liner overwrapped with carbon fibers subjected to a burst internal pressure of 1610 bars. As the service pressure expected in these tanks is 700 bars, a factor of safety of 2.3 is kept the same for all designs.
Technical Paper

Application of Sleeper Cab Thermal Management Technologies to Reduce Idle Climate Control Loads in Long-Haul Trucks

In the United States, an intercity long-haul truck averages approximately 1,800 hrs per year for idling, primarily for sleeper cab hotel loads, consuming 838 million gallons of diesel fuel across the entire long-haul fleet [1]. Including workday idling, over 2 billion gallons of fuel are used annually for truck idling [2]. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is working on solutions to reduce idling fuel use through the CoolCab project. The objective of the CoolCab project is to work closely with industry to design efficient thermal management systems for long-haul trucks that minimize engine idling and fuel use while maintaining the cab occupant comfort. NREL conducted an experimental test program at their Vehicle Testing and Integration Facility in collaboration with Volvo Trucks, Aearo Technologies LLC / E-A-R Thermal Acoustic Systems - a 3M company, 3M Corporation, and Dometic Environmental Corporation.