Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Journal Article

Combined Battery Design Optimization and Energy Management of a Series Hybrid Military Truck

2018-10-31
Abstract This article investigates the fuel savings potential of a series hybrid military truck using a simultaneous battery pack design and powertrain supervisory control optimization algorithm. The design optimization refers to the sizing of the lithium-ion battery pack in the hybrid configuration. The powertrain supervisory control optimization determines the most efficient way to split the power demand between the battery pack and the engine. Despite the available design and control optimization techniques, a generalized mathematical formulation and solution approach for combined design and control optimization is still missing in the literature. This article intends to fill that void by proposing a unified framework to simultaneously optimize both the battery pack size and power split control sequence. This is achieved through a combination of genetic algorithm (GA) and Pontryagin’s minimum principle (PMP) where the design parameters are integrated into the Hamiltonian function.
Standard

Aircraft Flotation Analysis

2022-12-20
CURRENT
AIR1780B
This document is divided into five parts. The first part deals with flotation analysis features and definitions to acquaint the engineer with elements common to the various methods and the meanings of the terms used. The second part identifies and describes current flotation analysis methods. Due to the close relationship between flotation analysis and runway design, methods for the latter are also included in this document. As runway design criteria are occasionally used for flotation evaluation, including some for runways built to now obsolete criteria, a listing of the majority of these criteria constitutes the third part. The fourth part of this document tabulates the most relevant documents, categorizing them for commercial and civil versus military usage, by military service to be satisfied, and by type of pavement. This document concludes with brief elaborations of some concepts for broadening the analyst’s understanding of the subject.
Technical Paper

Guiding Framework for Feasibility Evaluation of Localised Production and Drop in Blending of Aviation Turbine Fuel with Bio Derivatives for Non-civilian Air Bases

2011-10-18
2011-01-2792
The potential for small scale local production of Bio fuel derivatives and their partial blending with aviation turbine fuel in non-civilian bases has been investigated. A feasibility study on technical readiness levels for process viability is presented in the paper. Demand side analysis for various blend mixes and corresponding requirement for production facilities and land area requirements are performed. Sustainable production and blending operations are the basis for selection of key performance indicators for the air base. Guiding framework and readiness evaluation processes are delineated for the base. Qualitative inference is combined with quantitative scoring system within the framework.
Technical Paper

An Integrated Energy Management and Control Framework for Hybrid Military Vehicles based on Situational Awareness and Dynamic Reconfiguration

2022-03-29
2022-01-0349
As powertrain hybridization technologies are becoming popular, their application for heavy-duty military vehicles is drawing attention. An intelligent design and operation of the energy management system (EMS) is important to ensure that hybrid military vehicles can operate efficiently, simultaneously maximize fuel economy and minimize monetary cost, while successfully completing mission tasks. Furthermore, an integrated EMS framework is vital to ensure a functional vehicle power system (VPS) to survive through critical missions in a highly stochastic environment, when needed. This calls for situational awareness and dynamic system reconfiguration capabilities on-board of the military vehicle. This paper presents a new energy management and control (EMC) framework based on holistic situational awareness (SA) and dynamic reconfiguration of the VPS.
Technical Paper

Simultaneous Design and Control Optimization of a Series Hybrid Military Truck

2018-04-03
2018-01-1109
This paper investigates the fuel saving potential of a series hybrid military truck using a simultaneous battery pack design and powertrain supervisory control optimization algorithm. The design optimization refers to the sizing of the Lithium-ion battery pack in the hybridized configuration. On the other hand, the powertrain supervisory control optimization finds the most efficient way to split power demands between the battery pack and the engine. Most of the previous literatures implement them separately. In contrast, combining the sizing and energy management problem into a single optimization problem produces the global optimal solution. This study proposes a novel unified framework to couple Genetic Algorithm (GA) with Pontryagin’s Minimum Principle (PMP) to determine the battery pack sizing and the power split control sequence simultaneously.
Research Report

Unsettled Issues Concerning Integrated Vehicle Health Management Systems and Maintenance Credits

2020-05-27
EPR2020006
The “holy grail” for prognostics and health management (PHM) professionals in the aviation sector is to have integrated vehicle health management (IVHM) systems incorporated into standard aircraft maintenance policies. Such a change from current aerospace industry practices would lend credibility to this field by validating its claims of reducing repair and maintenance costs and, hence, the overall cost of ownership of the asset. Ultimately, more widespread use of advanced PHM techniques will have a positive impact on safety and, for some cases, might even allow aircraft designers to reduce the weight of components because the uncertainty associated with estimating their predicted useful life can be reduced. We will discuss how standard maintenance procedures are developed, who the various stakeholders are, and – based on this understanding - outline how new PHM systems can gain the required approval to be included in these standard practices.
Technical Paper

Second-Life of Electric Vehicle Batteries from a Circular Economy Perspective: A Review and Future Direction

2023-08-28
2023-24-0151
The second-life use of batteries from electric vehicles (EV) represents an excellent and cost-effective option for energy storage applications, including the control of fluctuations in energy supply and demand or in combination with solar photovoltaic and wind turbine. Indeed, these batteries are normally replaced from EV use before the end of their service life, when they still have 70-80% of the original capacity. Depending on the cell chemistry and the specific design, such batteries can still be employed in less stressful applications than the automotive one, including commercial, residential, and industrial applications. With the aim to promote the transition to a circular closed-loop economy for spent traction batteries, this study consists in a systematic literature review of available options for reusing EV batteries as a storage system in a factory environment, highlighting benefits and critical aspects.
Standard

A Guide to APU Health Management

2023-09-15
CURRENT
AIR5317A
AIR5317 establishes the foundation for developing a successful APU health management capability for any commercial or military operator, flying fixed wing aircraft or rotorcraft. This AIR provides guidance for demonstrating business value through improved dispatch reliability, fewer service interruptions, and lower maintenance costs and for satisfying Extended Operations (ETOPS) availability and compliance requirements.
Technical Paper

Analysis of Geo-Location Data to Understand Power and Energy Requirements for Main Battle Tanks

2024-04-09
2024-01-2658
Tanks play a pivotal role in swiftly deploying firepower across dynamic battlefields. The core of tank mobility lies within their powertrains, driven by diesel engines or gas turbines. To better understand the benefits of each power system, this study uses geo-location data from the National Training Center to understand the power and energy requirements from a main battle tank over an 18-day rotation. This paper details the extraction, cleaning, and analysis of the geo-location data to produce a series of representative drive cycles for an NTC rotation. These drive-cycles serve as a basis for evaluating powertrain demands, chiefly focusing on fuel efficiency. Notably, findings reveal that substantial idling periods in tank operations contribute to diesel engines exhibiting notably lower fuel consumption compared to gas turbines. Nonetheless, gas turbines present several merits over diesel engines, notably an enhanced power-to-weight ratio and superior power delivery.
Journal Article

TOC

2024-02-12
Abstract TOC
Article

SAE International extends call for abstracts, seeks submissions for AeroTech conference

2022-08-11
Engineering Events staff at SAE International in Warrendale, Pennsylvania, have extended the call for abstracts through September 21 for the organization’s AeroTech aerospace and defense technology conference, which will take place at the Fort Worth Convention Center in Fort Worth, Texas, March 14-16, 2023. Visit the AeroTech call for abstracts page for more information and to get started.
Article

Advanced simulation using the digital twin to achieve electromagnetic compatibility and electrification management in a modern UAS

2022-01-13
The aerospace industry is facing immense challenges due to increased design complexity and higher levels of integration, particularly in the electrification of aircraft. These challenges can easily impact program cost and product time to market. System electrification and electromagnetic compatibility (EMC) have become critical issues today. In the context of 3D electromagnetics, EMC electromagnetic compatibility ensures the original equipment manufacturer (OEM) that radiated emissions from various electronic devices, such as avionics or the entire aircraft for that matter, do not interfere with other electronic products onboard the aircraft.
X