Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Monitoring Urea Quantity Delivery for Diesel SCR After-treatment

2012-02-01
While providing significant benefits to vehicle operation and emissions, on board diagnosis comes at a cost. In many cases the additional cost comes in the form of reduced optimal performance. Often the additional cost can be mitigated by considering the OBD requirements early in the development stages. In this presentation we show these trade-offs in a number of case studies. We will point out where the ability to diagnose comes at the cost of suboptimal performance, and where system design decisions can facilate the OBD task. Presenter Michiel Van Nieuwstadt, Ford Motor Co.
Video

SCR Deactivation Kinetics for Model-Based Control and Accelerated Aging Applications

2012-06-18
This paper forms the third of a series and presents results obtained during the testing and development phase of a dedicated range extender engine designed for use in a compact class vehicle. The first paper in this series used real world drive logs to identify usage patterns of such vehicles and a driveline model was used to determine the power output requirements of a range extender engine for this application. The second paper presented the results of a design study. Key attributes for the engine were identified, these being minimum package volume, low weight, low cost, and good NVH. A description of the selection process for identifying the appropriate engine technology to satisfy these attributes was given and the resulting design highlights were described. The paper concluded with a presentation of the resulting specification and design highlights of the engine. This paper will present the resulting engine performance characteristics.
Video

Characterization of a New Advanced Diesel Oxidation Catalyst with Low Temperature NOx Storage Capability for LD Diesel

2012-06-18
A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within a 2007 OEM aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). Having a better understanding of the passive NO2 oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Being able to model the passive oxidation of accumulated PM in the CPF is critical to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine.
Video

Development of DPF/SCR System for Heavy Duty Diesel Engine

2012-06-15
Manganese oxides show high catalytic activity for CO and HC oxidation without including platinum group metals (PGM). However, there are issues with both thermal stability and resistance to sulfur poisoning. We have studied perovskite-type YMnO3 (YMO) with the aim of simultaneously achieving both activity and durability. This paper describes the oxidation activity of PGM-free Ag/i-YMO, which is silver supported on improved-YMO (i-YMO). The Ag/i-YMO was obtained by the following two methods. First, Mn4+ ratio and specific surface area of YMO were increased by optimizing composition and preparation method. Second, the optimum amount of silver was supported on i-YMO. In model gas tests and engine bench tests, the Ag/i-YMO catalyst showed the same level of activity as that of the conventional Pt/?-Al2O3 (Pt = 3.0 g/L). In addition, there was no degradation with respect to either heat treatment (700°C, 90 h, air) or sulfur treatment (600°C to 200°C, total 60 h, 30 ppm SO2).
Video

Brief Investigation of SCR High Temperature N2O Production

2012-06-18
Nitrous Oxide (N2O) is a greenhouse gas with a Global Warming Potential (GWP) of 298-310 [1,2] (298-310 times more potent than carbon dioxide (CO2)). As a result, any aftertreatment system that generates N2O must be well understood to be used effectively. Under low temperature conditions, N2O can be produced by Selective Catalytic Reduction (SCR) catalysts. The chemistry is reasonably well understood with N2O formed by the thermal decomposition of ammonium nitrate [3]. Ammonium nitrate and N2O form in oxides of nitrogen (NOx) gas mixtures that are high in nitrogen dioxide (NO2)[4]. This mechanism occurs at a relatively low temperature of about 200°C, and can be controlled by maintaining the nitric oxide (NO)/NO2 ratio above 1. However, N2O has also been observed at relatively high temperatures, in the region of 500°C.
Video

On-Road Evaluation of an Integrated SCR and Continuously Regenerating Trap Exhaust System

2012-06-18
Four-way, integrated, diesel emission control systems that combine selective catalytic reduction for NOx control with a continuously regenerating trap to remove diesel particulate matter were evaluated under real-world, on-road conditions. Tests were conducted using a semi-tractor with an emissions year 2000, 6-cylinder, 12 L, Volvo engine rated at 287 kW at 1800 rpm and 1964 N-m. The emission control system was certified for retrofit application on-highway trucks, model years 1994 through 2002, with 4-stroke, 186-373 kW (250-500 hp) heavy-duty diesel engines without exhaust gas recirculation. The evaluations were unique because the mobile laboratory platform enabled evaluation under real-world exhaust plume dilution conditions as opposed to laboratory dilution conditions. Real-time plume measurements for NOx, particle number concentration and size distribution were made and emission control performance was evaluated on-road.
Video

SCR Deactivation Study for OBD Applications

2012-06-18
Selective catalytic reduction (SCR) catalysts will be used to reduce oxides of nitrogen (NOx) emissions from internal combustion engines in a number of applications [1,2,3,4]. Southwest Research Institute® (SwRI)® performed an Internal Research & Development project to study SCR catalyst thermal deactivation. The study included a V/W/TiO2 formulation, a Cu-zeolite formulation and an Fe-zeolite formulation. This work describes NOx timed response to ammonia (NH3) transients as a function of thermal aging time and temperature. It has been proposed that the response time of NOx emissions to NH3 transients, effected by changes in diesel emissions fluid (DEF) injection rate, could be used as an on-board diagnostic (OBD) metric. The objective of this study was to evaluate the feasibility and practicality of this OBD approach.
Video

Development of a 3rd Generation SCR NH3-Direct Dosing System for Highly Efficient DeNOx

2012-06-18
In this project funded by the Bayerische Forschungsstiftung two fundamental investigations had been carried out: first a new N-rich liquid ammonia precursor solution based on guanidine salts had been completely characterized and secondly a new type of side-flow reactor for the controlled catalytic decomposition of aqueous NH3 precursor to ammonia gas has been designed, applied and tested in a 3 liter passenger car diesel engine. Guanidine salts came into the focus due to the fact of a high nitrogen-content derivate of urea (figure 1). Specially guanidinium formate has shown extraordinary solubility in water (more than 6 kg per 1 liter water at room temperature) and therefore a possible high ammonia potential per liter solution compared to the classical 32.5% aqueous urea solution (AUS32) standardized in ISO 22241 and known as DEF (diesel emission fluid), ARLA32 or AdBlue®. Additionally a guanidine based formulation could be realized with high freezing stability down to almost ?30 °C (?
Video

Hydrocarbon Fouling of SCR During PCCI Combustion

2012-06-18
The combination of advanced combustion with advanced selective catalytic reduction (SCR) catalyst formulations was studied in the work presented here to determine the impact of the unique hydrocarbon (HC) emissions from premixed charge compression ignition (PCCI) combustion on SCR performance. Catalyst core samples cut from full size commercial Fe- and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. The zeolites which form the basis of these catalysts are different with the Cu-based catalyst made on a chabazite zeolite which las smaller pore structures relative to the Fe-based catalyst. Subsequent to exposure, bench flow reactor characterization of performance and hydrocarbon release and oxidation enabled evaluation of overall impacts from the engine exhaust.
Collection

Advances in NOx Reduction Technology, 2015

2015-04-14
This technical paper collection will focus on ‘Advances in NOx Reduction Technology’. The topics covered will include: new materials for lean NOx traps (LNT) and Selective Catalytic Reduction (SCR); system integration and durability; advances in NOx catalyst substrates, novel reductants and mixing designs.
Collection

Advances in NOx Reduction Technology, 2018

2018-04-03
The papers in this collection focus on "Advances in NOx Reduction Technology." The topics covered include: new materials for Lean NOx Traps (LNT) and Selective Catalytic Reduction (SCR); system integration and durability; advances in NOx catalyst substrates, novel reductants, and mixing designs.
Collection

Advances in NOx Reduction Technology, 2017

2017-03-28
The papers in this collection focus on "Advances in NOx Reduction Technology." The topics covered include: new materials for Lean NOx Traps (LNT) and Selective Catalytic Reduction (SCR); system integration and durability; advances in NOx catalyst substrates, novel reductants, and mixing designs.
Journal Article

Aging Effects of Catalytic Converters in Diesel Exhaust Gas Systems and Their Influence on Real Driving NOx Emissions for Urban Buses

2018-06-18
Abstract The selective catalytic reduction (SCR) of nitrogen oxides seems to be the most promising technique to meet prospective emission regulations of diesel-driven commercial vehicles. In the case of developing cost-effective catalytic converters with comparably high activity, selectivity, and resistance against aging, ion-exchanged zeolites play a major role. This study presents, firstly, a brief literature review and subsequently a discussion of an extensive conversion analysis of exemplary Cu/ and Fe/zeolites, as well as a homogeneous admixture of both. The aging stages of SCR catalysts deserve particular attention in this study. In addition, the aging condition of the diesel oxidation catalyst (DOC) was analyzed, which influences the nitrogen dioxide (NO2) formation, because the NO2/nitrogen oxides (NOx) ratio upstream from the SCR converter could be identified as a key factor for low temperature NOx conversion.
Journal Article

Genetic Algorithm based Automated Calibration Tool for Numerical Selective Catalytic Reduction (SCR) Models

2009-04-20
2009-01-1265
An automated process was developed for the calibration of numerical aftertreatment models. The chemical kinetic mechanism examined in this case was part of a simplified SCR model. The process adopted for calibrating the SCR model was based on a micro-population multi-objective genetic algorithm. The algorithm developed was used to calibrate the SCR model using data derived from another, more detailed model to ensure that the evaluation focused only on the effectiveness of the calibration process and was not affected by issues of experimental inaccuracies or details of the model chemistry involved.
Journal Article

A Urea Decomposition Modeling Framework for SCR Systems

2009-04-20
2009-01-1269
Selective catalytic reduction (SCR) is allowing diesel engines to reach NOx emission levels which are unachievable in-cylinder. This technology is still evolving, and new catalyst formulations which provide higher performance and greater durability continue to be developed. Usually, their performance is measured on a flow reactor using ammonia as the reductant. However, in mobile applications a urea-water solution is used instead, and urea decomposition by thermolysis and hydrolysis provides the required ammonia to the catalyst. It is well known that urea decomposition is incomplete by the inlet face of the converter, and this is at least one reason why on-engine performance is generally lower than would be expected from reactor tests. Previous modeling of urea-water droplets has focused on developing detailed sub-models that can be implemented into computational fluid dynamics (CFD) codes.
Journal Article

Cost and Fuel Efficient SCR-only Solution for Post-2010 HD Emission Standards

2009-04-20
2009-01-0915
A promising SCR-only solution is presented to meet post-2010 NOx emission targets for heavy duty applications. The proposed concept is based on an engine from a EURO IV SCR application, which is considered optimal with respect to fuel economy and costs. The addition of advanced SCR after treatment comprising a standard and a close-coupled SCR catalyst offers a feasible emission solution, especially suited for EURO VI. In this paper, results of a simulation study are presented. This study concentrates on optimizing SCR deNOx performance. Simulation results of cold start FTP and WHTC test cycles are presented to demonstrate the potential of the close-coupled SCR concept. Comparison with measured engine out emissions of an EGR engine shows that a close-coupled SCR catalyst potentially has NOx reduction performance as good as EGR. Practical issues regarding the use of an SCR catalyst in close-coupled position will be addressed, as well as engine and exhaust layout.
Journal Article

Evaluation of SCR Catalyst Technology on Diesel Particulate Filters

2009-04-20
2009-01-0910
Selective Catalytic Reduction (SCR) catalysts have been demonstrated as effective for controlling NOx emissions from diesel engines, maintaining high NOx conversion even after the extended high temperature exposure encountered in systems with active filter regenerations. As future diesel emission regulations are expected to be further reduced, packaging a large volume of SCR catalysts in diesel exhaust systems, along with DOC and particulate filter catalysts, will be challenging. One method to reduce the total volume of catalysts in diesel exhaust systems is to combine the SCR and DPF catalysts by coating SCR catalyst technology on particulate filters. In this work, engine evaluation of SCR coated filters has been conducted to determine the viability of the technology. Steady-state engine evaluations demonstrated that high NOx conversions can be achieved for SCR coated filters after high temperature oven aging.
Journal Article

SCR Catalyst Systems Optimized for Lightoff and Steady-State Performance

2009-04-20
2009-01-0901
A laboratory study was performed to optimize a zoned configuration of an iron (Fe) SCR catalyst and a copper (Cu) SCR catalyst in order to provide high NOx conversion at lean A/F ratios over a broad range of temperature for diesel and lean-burn gasoline applications. With an optimized space velocity of 8,300 hr-1, a 67% (by volume) Fe section followed by a 33% Cu section provided at least 80% NOx conversion from approximately 230°C to 640°C when evaluated with 500 ppm NO and NH3. To improve the lean lightoff performance of the SCR catalyst system during a cold start, a Cu SCR catalyst that was 1/4 as long as the rear Cu SCR catalyst was placed in front of the Fe SCR catalyst. When evaluated with an excess of NH3 (NH3/NO ratio of 2.2), the Cu+Fe+Cu SCR system had significantly improved lightoff performance relative to the Fe+Cu SCR system, although the front Cu SCR catalyst did decrease the NOx conversion at temperatures above 475°C by oxidizing some of the NH3 to N2 or NO.
Journal Article

Laboratory Study of Soot, Propylene, and Diesel Fuel Impact on Zeolite-Based SCR Filter Catalysts

2009-04-20
2009-01-0903
Selective Catalytic Reduction (SCR) catalysts have been designed to reduce NOx with the assistance of an ammonia-based reductant. Diesel Particulate Filters (DPF) have been designed to trap and eventually oxidize particulate matter (PM). Combining the SCR function within the wall of a high porosity particulate filter substrate has the potential to reduce the overall complexity of the aftertreatment system while maintaining the required NOx and PM performance. The concept, termed Selective Catalytic Reduction Filter (SCRF) was studied using a synthetic gas bench to determine the NOx conversion robustness from soot, coke, and hydrocarbon deposition. Soot deposition, coke derived from propylene exposure, and coke derived from diesel fuel exposure negatively affected the NOx conversion. The type of soot and/or coke responsible for the inhibited NOx conversion did not contribute to the SCRF backpressure.
Journal Article

The Poisoning and Desulfation Characteristics of Iron and Copper SCR Catalysts

2009-04-20
2009-01-0900
A laboratory study was performed to assess the effects of SO2 poisoning on the NOx conversion of iron (Fe) and copper (Cu) SCR catalysts. Thermally aged samples of the catalysts were poisoned with SO2 under lean conditions. At various times during the poisonings, the samples were evaluated for NOx conversion with NO and NH3 using lean temperature ramps. The low temperature NOx conversions of both catalysts decreased by 10 to 20% after 1 to 4 hours of poisoning but were stable with continued exposure to the SO2. The poisoned Cu SCR catalyst could be desulfated repeatedly with 5 minutes of lean operation at 600°C. Initially, the poisoned Fe SCR catalyst required 5 minutes of lean operation at 750°C to recover its maximum NOx conversion.
X