Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of a Vehicle Drive Shaft Telemetry System

Historically, driveshaft torque data has been obtained using slip rings. Slip rings, however, are expensive, and require time-intensive driveshaft modifications for proper installation. In addition, the time and expense involved in field servicing units is prohibitive. For these reasons, AISIN Technical Center of America (ATCA) investigated a viable telemetry solution. At the onset of this development activity, existing torque telemetry solutions had their own issues. In particular, they did not offer the same data resolution as slip rings, they lacked sufficient battery life for long-term, real-world testing applications, and they suffered from data drop-outs. ATCA worked with TECAT Performance Systems to develop a torque telemetry solution that addressed all of these issues. This paper presents the development activity involved, alongside real-world measurement data showing the results of both the slip ring and telemetry solutions.
Technical Paper

Improvement in Spark-Ignition Engine Fuel Consumption and Cyclic Variability with Pulsed Energy Spark Plug

Conventional spark plugs ignite a fuel-air mixture via an electric-to-plasma energy transfer; the effectiveness of which can be described by an electric-to-plasma energy efficiency. Although conventional spark plug electric-to-plasma efficiencies have historically been viewed as adequate, it might be wondered how an increase in such an efficiency might translate (if at all) to improvements in the flame initiation period and eventual engine performance of a spark-ignition engine. A modification can be made to the spark plug that places a peaking capacitor in the path of the electrical current; upon coil energizing, the stored energy in the peaking capacitor substantially increases the energy delivered by the spark. A previous study has observed an improvement in the electric-to-plasma energy efficiency to around 50%, whereas the same study observed conventional spark plug electric-to-plasma energy efficiency to remain around 1%.