Refine Your Search

Topic

Author

Affiliation

Search Results

Collection

Multi-Dimensional Engine Modeling, 2018

2018-04-03
This collection covers advances in the development and application of models and tools involved in multi-dimensional engine modeling: advances in chemical kinetics, combustion and spray modeling, turbulence, heat transfer, mesh generation, and approaches targeting improved computational efficiency. Papers employing multi-dimensional modeling to gain a deeper understanding of processes related to turbulent transport, transient phenomena, and chemically reacting, two-phase flows are included in this collection.
Standard

SAE MANUAL ON BLAST CLEANING

1968-06-01
CURRENT
J792A_196806
Blast cleaning may be defined as a secondary manufacturing process in which a suitable stream of solid particles is propelled with sufficient velocity against a work surface to cause a cleaning or abrading action when it comes in contact with the workpiece. As indicated in the definition, blast cleaning may be employed for a variety of purposes. Ordinarily, it is considered as a method for removing sand from castings, burrs or scale from forgings, mill products, or heat treated parts; to promote machinability, and to minimize the possibility of interference in actual operation. In addition to this use, blast cleaning also produces an excellent surface for industrial coatings. All these objectives are often accomplished in the one operation.
Standard

Diesel Injection Pump Testing—Part 2: Orifice Plate Flow Measurement

2015-09-22
CURRENT
J968/2_201509
This part of SAE J968 specifies the flow measuring system, including the fixture, to be used for flow testing the single hole orifice plates used in an orifice plate type nozzle and holder assembly (described in SAE J968-1) which is intended for testing and setting diesel fuel injection pumps on test benches. The flow measuring system and fixture ensure accurate flow testing of the entire range of orifices from 0.4 to 0.8 mm diameter as specified in SAE J968-1. It is intended primarily for use by the manufacturers of single hole orifice plates.
Standard

Diesel Injection Pump Testing—Part 2: Orifice Plate Flow Measurement

2002-12-20
HISTORICAL
J968/2_200212
This part of SAE J968 specifies the flow measuring system, including the fixture, to be used for flow testing the single hole orifice plates used in an orifice plate type nozzle and holder assembly (described in SAE J968-1) which is intended for testing and setting diesel fuel injection pumps on test benches. The flow measuring system and fixture ensure accurate flow testing of the entire range of orifices from 0.4 to 0.8 mm diameter as specified in SAE J968-1. It is intended primarily for use by the manufacturers of single hole orifice plates.
Standard

Fuel Injection Equipment Nomenclature

1999-04-21
HISTORICAL
J830_199904
This SAE Standard establishes a vocabulary and definitions relating to the components used in fuel injection systems for compression ignition (diesel) engines. Definitions are separated into six sections by topic as follows: Section 3— Fuel Injection Pumps Section 4— Fuel Injectors Section 5— Unit Injectors Section 6— Governors Section 7— Timing Devices Section 8— High Pressure Pipes and Connections NOTE— When the word "fuel" is used in the terms listed it may be omitted providing there can be no misunderstanding.
Standard

Fuel Injection Equipment Nomenclature

1992-10-01
HISTORICAL
J830_199210
This SAE Standard establishes a vocabulary and definitions relating to the components used in fuel injection systems for compression ignition (diesel) engines. Definitions are separated into six sections by topic as follows: Section 3 Fuel Injection Pumps; Section 4 Fuel Injectors; Section 5 Unit Injectors; Section 6 Governors; Section 7 Timing Devices; Section 8 High Pressure Pipes and Connections.
Standard

Fuel Injection Equipment Nomenclature

2015-11-24
CURRENT
J830_201511
This SAE Standard establishes a vocabulary and definitions relating to the components used in fuel injection systems for compression ignition (diesel) engines. Definitions are separated into six sections by topic as follows: Section 3--Fuel Injection Pumps Section 4--Fuel Injectors Section 5--Unit Injectors Section 6--Governors Section 7--Timing Devices Section 8--High Pressure Pipes and Connections NOTE: When the word fuel is used in the terms listed it may be omitted providing there can be no misunderstanding.
Standard

Sleeve Type Half Bearings

2011-06-10
CURRENT
J506_201106
This SAE Standard defines the normal dimensions, dimensioning practice, tolerances, specialized measurement techniques, and glossary of terms for bearing inserts commonly used in reciprocating machinery. The standard sizes cover a range which permits a designer to employ, in proper proportion, the durability and lubrication requirements of each application, while utilizing the forming and machining practices common in manufacture of sleeve type half bearings. Not included are considerations of hydrodynamic lubrication analysis or mechanical stress factors of associated machine structural parts which determine the nominal sizes to be used, selection of bearing material as related to load carrying capacity, and economics of manufacture. For information concerning materials, see SAE J459 and SAE J460. These suggested sizes provide guidelines which may result in minimal costs of tooling but do not necessarily represent items which can be ordered from stock.
Standard

Diesel Engines - Steel Tubes for High-Pressure Fuel Injection Pipes (Tubing)

2015-11-24
CURRENT
J1958_201511
This SAE Standard specifies dimensions and requirements for single-wall steel tubing intended for use as high-pressure fuel injection pipes on a wide range of engines (Class A), and for fuel injection pump testing (Class B, Reference SAE J1418). Tubing shall be cold drawn, annealed or normalized, seamless tubing suitable for cold swaging, cold upsetting, and cold bending.
Standard

Diesel Engines--Steel Tubes for High-Pressure Fuel Injection Pipes (Tubing)

1995-06-01
HISTORICAL
J1958_199506
This SAE Standard specifies dimensions and requirements for single-wall steel tubing intended for use as high-pressure fuel injection pipes on a wide range of engines (Class A), and for fuel injection pump testing (Class B, Reference SAE J1418). Tubing shall be cold drawn, annealed or normalized, seamless tubing suitable for cold swaging, cold upsetting and cold bending.
Standard

Diesel Engines—Steel Tubes for High-Pressure Fuel Injection Pipes (Tubing)

2002-10-25
HISTORICAL
J1958_200210
This SAE Standard specifies dimensions and requirements for single-wall steel tubing intended for use as high-pressure fuel injection pipes on a wide range of engines (Class A), and for fuel injection pump testing (Class B, Reference SAE J1418). Tubing shall be cold drawn, annealed or normalized, seamless tubing suitable for cold swaging, cold upsetting, and cold bending.
Standard

Diesel Engines--Steel Tubes for High-Pressure Fuel Injection Pipes (Tubing)

1989-04-01
HISTORICAL
J1958_198904
This SAE Standard specifies dimensions and requirements for single-wall steel tubing intended for use as high-pressure fuel injection pipes on a wide range of engines (Class A), and for fuel injection pump testing (Class B, Reference SAE J1418). Tubing shall be cold drawn, annealed or normalized, seamless tubing suitable for cold swaging, cold upsetting, and cold bending.
Standard

WROUGHT NICKEL AND NICKEL-RELATED ALLOYS

1976-07-01
HISTORICAL
J470_197607
This Report presents general information on over 50 alloys in which nickel either predominates or is a significant alloying element. It covers primarily wrought materials, and is not necessarily all inclusive. Values given are in most cases average or nominal, and if more precise values are required the producer(s) should be contacted. This report does not cover the so-called "superalloys," or the iron base stainless steels. Refer to SAE J467, Special Purpose Alloys, and SAE J405, Chemical Compositions of SAE Wrought Stainless Steels, respectively, for data on these alloys.
Standard

Wrought Nickel and Nickel-Related Alloys

2018-02-15
CURRENT
J470_201802
This Report presents general information on over 50 alloys in which nickel either predominates or is a significant alloying element. It covers primarily wrought materials, and is not necessarily all inclusive. Values given are in most cases average or nominal, and if more precise values are required the producer(s) should be contacted. This report does not cover the so-called "superalloys," or the iron base stainless steels. Refer to SAE J467, Special Purpose Alloys, and SAE J405, Chemical Compositions of SAE Wrought Stainless Steels, respectively, for data on these alloys.
Standard

Voltages for Diesel Electrical Systems

1976-09-01
HISTORICAL
J539A_197609
This SAE Recommended Practice is intended to apply to lamps, batteries, heaters, radios, and similar equipment for operation with mobile or automotive diesel engines. Twenty-four V systems have long been used for heavy duty services because 24 V permit operating 12 V systems in series-parallel. Thirty-two V systems have been used for marine, railroad-car lighting, and other uses. Generators, storage batteries, starting motors, lighting, and auxiliary electrical equipment shall be for nominal system ratings of 12, 24, or 32 V as determined by the power requirements of the application. It is recommended that no intermediate voltages be considered. The combination of a 24 V starting motor and two 12 V batteries connected in series for cranking is considered practice where it can be adapted to the installation.
Standard

Voltages for Diesel Electrical Systems

1987-03-01
HISTORICAL
J539_198703
This SAE Recommended Practice is intended to apply to lamps, batteries, heaters, radios, and similar equipment for operation with mobile or automotive diesel engines. Twenty-four V systems have long been used for heavy duty services because 24 V permit operating 12 V systems in series-parallel. Thirty-two V systems have been used for marine, railroad-car lighting, and other uses. Generators, storage batteries, starting motors, lighting, and auxiliary electrical equipment shall be for nominal system ratings of 12, 24, or 32 V as determined by the power requirements of the application. It is recommended that no intermediate voltages be considered. The combination of a 24 V starting motor and two 12 V batteries connected in series for cranking is considered practice where it can be adapted to the installation.
Standard

VOLTAGES FOR DIESEL ELECTRICAL SYSTEMS

1993-11-23
CURRENT
J539_199311
This SAE Recommended Practice is intended to apply to lamps, batteries, heaters, radios, and similar equipment for operation with mobile or automotive diesel engines. Twenty-four V systems have long been used for heavy-duty services because 24 V permit operating 12 V systems in series-parallel. Thirty-two V systems have been used for marine, railroad-car lighting, and other uses. Generators, storage batteries, starting motors, lighting, and auxiliary electrical equipment shall be for nominal system ratings of 12, 24, or 32 V as determined by the power requirements of the application. It is recommended that no intermediate voltages be considered. The combination of a 24 V starting motor and two 12 V batteries connected in series for cranking is considered practical where it can be adapted to the installation.
Standard

Diesel Fuel Injector Assembly - Flange Mounted Types 5 and 6

2002-12-13
HISTORICAL
J629_200212
This SAE Standard specifies the dimensional requirements necessary for the mounting and interchangeability of two types of fuel injectors in diesel engines. The location and dimensions of the fuel inlet, leak-off connections, and flange design are not defined since they may vary according to the particular application.
X