Refine Your Search

Topic

Author

Affiliation

Search Results

Standard

Lubricating Oils, Aircraft Piston Engine (Non-Dispersant Mineral Oil)

1991-06-01
HISTORICAL
J1966_199106
This SAE Standard establishes the requirements for lubricating oils containing ashless dispersant additives to be used in four-stroke cycle, reciprocating piston aircraft engines. This document covers the same lubricating oil requirements as the former military specification MIL-L-22851. Users should consult their airframe or engine manufacturers manuals for the latest listing of acceptable lubricants.
Standard

Lubricating Oils, Aircraft Piston Engine (Non-Dispersant Mineral Oil)

1989-12-01
HISTORICAL
J1966_198912
This SAE Standard establishes the requirements for lubricating oils containing ashless dispersant additives to be used in four-stroke cycle, reciprocating piston aircraft engines. This document covers the same lubricating oil requirements as the former military specification MIL-L-22851. Users should consult their airframe or engine manufacturers manuals for the latest listing of acceptable lubricants.
Standard

Lubricating Oils, Aircraft Piston Engine(Non-Dispersant Mineral Oil)

2000-06-08
HISTORICAL
J1966_200006
This SAE Standard establishes the requirements for nondispersant, mineral lubricating oils to be used in four-stroke cycle piston aircraft engines. This document covers the same lubricating oil requirements as the former military specification MIL-L-6082. Users should consult their airframe or engine manufacturers manuals for the latest listing of acceptable lubricants.
Standard

Lubricating Oils, Aircraft Piston Engine (Non-Dispersant Mineral Oil)

2005-07-31
HISTORICAL
J1966_200507
This SAE Standard establishes the requirements for nondispersant, mineral lubricating oils to be used in four-stroke cycle piston aircraft engines. This document covers the same lubricating oil requirements as the former military specification MIL-L-6082. Users should consult their airframe or engine manufacturers manuals for the latest listing of acceptable lubricants.
White Paper

REDUCING DOWNTIME THROUGH THE USE OF PREDICTIVE ANALYTICS AND TECHNICAL TRAINING ADVANCEMENTS

2018-01-05
WP-0007
The exponential increase in the number of aircraft and air travelers has triggered new innovations aimed to make airline services more reliable and consumer friendly. Quick and efficient maintenance actions with minimum downtime are the need of the hour. Another major challenge is ensuring maintenance personnel are trained effectively; technology like augmented reality and Virtual Maintenance Trainers (VMTs) may provide safe and efficient training in lieu of live, instructor-led arrangements. And while traditional User/Maintenance Manuals provide useful information when dealing with simple machines, when dealing with complex systems of systems and miniaturized technologies, like unmanned aerial vehicles (UAVs), new technologies like augmented reality can rapidly and effectively support the maintenance operations.
Standard

SAE MANUAL ON BLAST CLEANING

1968-06-01
CURRENT
J792A_196806
Blast cleaning may be defined as a secondary manufacturing process in which a suitable stream of solid particles is propelled with sufficient velocity against a work surface to cause a cleaning or abrading action when it comes in contact with the workpiece. As indicated in the definition, blast cleaning may be employed for a variety of purposes. Ordinarily, it is considered as a method for removing sand from castings, burrs or scale from forgings, mill products, or heat treated parts; to promote machinability, and to minimize the possibility of interference in actual operation. In addition to this use, blast cleaning also produces an excellent surface for industrial coatings. All these objectives are often accomplished in the one operation.
Standard

Fuel Injection Equipment Nomenclature

1999-04-21
HISTORICAL
J830_199904
This SAE Standard establishes a vocabulary and definitions relating to the components used in fuel injection systems for compression ignition (diesel) engines. Definitions are separated into six sections by topic as follows: Section 3— Fuel Injection Pumps Section 4— Fuel Injectors Section 5— Unit Injectors Section 6— Governors Section 7— Timing Devices Section 8— High Pressure Pipes and Connections NOTE— When the word "fuel" is used in the terms listed it may be omitted providing there can be no misunderstanding.
Book

Counterfeit Electronic Parts and Their Impact on Supply Chains

2014-10-20
Electronic parts are used throughout industry to run everyday products, such as cell phones, and also highly technical products, such as aircraft, missiles, and spacecraft. Unlike cell phones, which are often replaced every year, the highly technical products may remain in service from 20 to more than 80 years. But what happens if the original electronic part, with a life cycle of 18 months, is no longer available? Some manufacturers have discovered that they have unwittingly purchased counterfeit ones. Counterfeit Electronic Parts and Their Impact on Supply Chains examines how these items are negatively affecting the aviation, spacecraft, and defense sectors and what can be done about it.
Standard

Pneumatic Spring Terminology

2016-04-01
CURRENT
J511_201604
This pneumatic spring terminology has been developed to assist engineers and designers in the preparation of specifications and descriptive material relating to pneumatic springs and their components. It does not include gas supply or control systems.
Standard

PNEUMATIC SPRING TERMINOLOGY

1989-06-01
HISTORICAL
J511_198906
This pneumatic spring terminology has been developed to assist engineers and designers in the preparation of specifications and descriptive material relating to pneumatic springs and their components. It does not include gas supply or control systems.
Standard

Sleeve Type Half Bearings

1978-11-01
HISTORICAL
J506B_197811
This SAE Standard defines the normal dimensions, dimensioning practice, tolerances, specialized measurement techniques, and glossary of terms for bearing inserts commonly used in reciprocating machinery. The standard sizes cover a range which permits a designer to employ, in proper proportion, the durability and lubrication requirements of each application, while utilizing the forming and machining practices common in manufacture of sleeve type half bearings. Not included are considerations of hydrodynamic lubrication analysis or mechanical stress factors of associated machine structural parts which determine the nominal sizes to be used, selection of bearing material as related to load carrying capacity, and economics of manufacture. For information concerning materials, see SAE J459 and SAE J460. These suggested sizes provide guidelines which may result in minimal costs of tooling but do not necessarily represent items which can be ordered from stock.
Standard

Sleeve Type Half Bearings

2011-06-10
CURRENT
J506_201106
This SAE Standard defines the normal dimensions, dimensioning practice, tolerances, specialized measurement techniques, and glossary of terms for bearing inserts commonly used in reciprocating machinery. The standard sizes cover a range which permits a designer to employ, in proper proportion, the durability and lubrication requirements of each application, while utilizing the forming and machining practices common in manufacture of sleeve type half bearings. Not included are considerations of hydrodynamic lubrication analysis or mechanical stress factors of associated machine structural parts which determine the nominal sizes to be used, selection of bearing material as related to load carrying capacity, and economics of manufacture. For information concerning materials, see SAE J459 and SAE J460. These suggested sizes provide guidelines which may result in minimal costs of tooling but do not necessarily represent items which can be ordered from stock.
Standard

WROUGHT NICKEL AND NICKEL-RELATED ALLOYS

1976-07-01
HISTORICAL
J470_197607
This Report presents general information on over 50 alloys in which nickel either predominates or is a significant alloying element. It covers primarily wrought materials, and is not necessarily all inclusive. Values given are in most cases average or nominal, and if more precise values are required the producer(s) should be contacted. This report does not cover the so-called "superalloys," or the iron base stainless steels. Refer to SAE J467, Special Purpose Alloys, and SAE J405, Chemical Compositions of SAE Wrought Stainless Steels, respectively, for data on these alloys.
Standard

Wrought Nickel and Nickel-Related Alloys

2018-02-15
CURRENT
J470_201802
This Report presents general information on over 50 alloys in which nickel either predominates or is a significant alloying element. It covers primarily wrought materials, and is not necessarily all inclusive. Values given are in most cases average or nominal, and if more precise values are required the producer(s) should be contacted. This report does not cover the so-called "superalloys," or the iron base stainless steels. Refer to SAE J467, Special Purpose Alloys, and SAE J405, Chemical Compositions of SAE Wrought Stainless Steels, respectively, for data on these alloys.
Standard

STARTING MOTOR MOUNTINGS

1991-06-01
CURRENT
J542_199106
The purpose of this SAE Recommended Practice is to provide standardized dimensions for mounting starting motors. (See Figures 1 through 4.) It is recommended that a full register diameter having a minimum depth of 2.54 mm (0.100 in) be provided in the flywheel housing to insure proper control of gear center distance and clearance between pitch diameters. The clearance between the starting motor pilot diameter and the register diameter in the flywheel housing should be 0.03 mm (0.001 in) minimum to 0.25 mm (0.010 in) maximum. Text noted with an asterisk in Figures 1, 2, and 3, should not exceed root radius of pinion in order to provide clearance for the flywheel. The face of the starting motor mounting flange should be relieved at its junction with the pilot diameter to avoid mounting interference with flywheel housing. For backlash allowance between the pinion and ring gear refer to SAE J543. Dimensional units—millimeter (inch)
Standard

Flywheels for Two-Plate Spring-Loaded Clutches

1993-12-01
HISTORICAL
J619_199312
This SAE Recommended Practice defines flywheel configuration to promote standardization of flywheels for dry spring-loaded clutches. Clutches to fit flywheels with configurations per this recommended practice may not be commercially available. Availability should be ascertained prior to flywheel design (see Figure 1 and Table 1).
X