Refine Your Search

Topic

Author

Affiliation

Search Results

Standard

Vehicle Electromagnetic Immunity--On-Board Transmitter Simulation

2009-08-03
CURRENT
J551/12_200908
This part of SAE J551 specifies on-board transmitter simulation test methods and procedures for testing passenger cars and commercial vehicles. The electromagnetic disturbances considered in this part of SAE J551 are limited to continuous narrow band electromagnetic fields. SAE J551/1 specifies general, definitions, practical use, and basic principles of the test procedure.
Standard

Braking Performance--Asphalt Pavers

2006-01-04
HISTORICAL
J2118_200601
This SAE Standard specifies brake system performance and test criteria to enable uniform evaluation of the braking capability of self-propelled, rubber-tired asphalt pavers. Service, secondary, and parking brakes are included. Application This document applies to self-propelled, rubber-tired asphalt pavers as defined in 3.1 and to these same machines while in service.
Standard

Braking Performance - Asphalt Pavers

2012-09-12
HISTORICAL
J2118_201209
This SAE Standard specifies brake system performance and test criteria to enable uniform evaluation of the braking capability of self-propelled, rubber-tired and tracked asphalt pavers. Service, secondary, and parking brakes are included.
Standard

Braking Performance - Asphalt Pavers

2018-10-04
CURRENT
J2118_201810
This SAE Standard specifies brake system performance and test criteria to enable uniform evaluation of the braking capability of self-propelled, rubber-tired and tracked asphalt pavers. Service, secondary, and parking brakes are included.
Video

SAE Eye on Engineering: Ford's new steel-bodied Ranger

2018-11-08
Today, ford motor company begins U.S. production of its 2019 Ranger, the company's first midsize pickup. In this episode of SAE Eye on Engineering, Editor-in-Chief Lindsay Brooke looks at the new steel-bodied Ranger. SAE Eye on Engineering also airs Monday mornings on WJR 760 AM Detroit's Paul W. Smith Show.
Standard

Electromagnetic Testing by Eddy Current Methods

2018-01-09
CURRENT
J425_201801
The purpose of this SAE Information Report is to provide general information relative to the nature and use of eddy current techniques for nondestructive testing. The document is not intended to provide detailed technical information but to serve as an introduction to the principles and capabilities of eddy current testing, and as a guide to more extensive references listed in Section 2.
Standard

ELECTROMAGNETIC TESTING BY EDDY CURRENT METHODS

1991-03-01
HISTORICAL
J425_199103
The purpose of this SAE Information Report is to provide general information relative to the nature and use of eddy current techniques for nondestructive testing. The document is not intended to provide detailed technical information but to serve as an introduction to the principles and capabilities of eddy current testing, and as a guide to more extensive references listed in Section 2.
Standard

Electromagnetic Testing By Eddy Current Methods

1981-03-01
HISTORICAL
J425_198103
The purpose of this SAE Information Report is to provide general information relative to the nature and use of eddy current techniques for nondestructive testing. The document is not intended to provide detailed technical information but to serve as an introduction to the principles and capabilities of eddy current testing, and as a guide to more extensive references listed in Section 2.
Standard

Electromagnetic Testing By Eddy Current Methods

1976-04-01
HISTORICAL
J425B_197604
The purpose of this SAE Information Report is to provide general information relative to the nature and use of eddy current techniques for nondestructive testing. The document is not intended to provide detailed technical information but to serve as an introduction to the principles and capabilities of eddy current testing, and as a guide to more extensive references listed in Section 2.
White Paper

REDUCING DOWNTIME THROUGH THE USE OF PREDICTIVE ANALYTICS AND TECHNICAL TRAINING ADVANCEMENTS

2018-01-05
WP-0007
The exponential increase in the number of aircraft and air travelers has triggered new innovations aimed to make airline services more reliable and consumer friendly. Quick and efficient maintenance actions with minimum downtime are the need of the hour. Another major challenge is ensuring maintenance personnel are trained effectively; technology like augmented reality and Virtual Maintenance Trainers (VMTs) may provide safe and efficient training in lieu of live, instructor-led arrangements. And while traditional User/Maintenance Manuals provide useful information when dealing with simple machines, when dealing with complex systems of systems and miniaturized technologies, like unmanned aerial vehicles (UAVs), new technologies like augmented reality can rapidly and effectively support the maintenance operations.
X