Refine Your Search

Topic

Author

Affiliation

Search Results

White Paper

REDUCING DOWNTIME THROUGH THE USE OF PREDICTIVE ANALYTICS AND TECHNICAL TRAINING ADVANCEMENTS

2018-01-05
WP-0007
The exponential increase in the number of aircraft and air travelers has triggered new innovations aimed to make airline services more reliable and consumer friendly. Quick and efficient maintenance actions with minimum downtime are the need of the hour. Another major challenge is ensuring maintenance personnel are trained effectively; technology like augmented reality and Virtual Maintenance Trainers (VMTs) may provide safe and efficient training in lieu of live, instructor-led arrangements. And while traditional User/Maintenance Manuals provide useful information when dealing with simple machines, when dealing with complex systems of systems and miniaturized technologies, like unmanned aerial vehicles (UAVs), new technologies like augmented reality can rapidly and effectively support the maintenance operations.
Collection

Multi-Dimensional Engine Modeling, 2018

2018-04-03
This collection covers advances in the development and application of models and tools involved in multi-dimensional engine modeling: advances in chemical kinetics, combustion and spray modeling, turbulence, heat transfer, mesh generation, and approaches targeting improved computational efficiency. Papers employing multi-dimensional modeling to gain a deeper understanding of processes related to turbulent transport, transient phenomena, and chemically reacting, two-phase flows are included in this collection.
Book

Meeting the Technology Management Challenges in the Automotive Industry

2000-02-25
In today's automotive industry, developing new products and systems is more important than ever before. Central to the creation of innovative products is technology development. However, managing technology development has often proven to be a difficult task for many American firms. This book provides instruction on how to make technology management more effective and efficient. It discusses several ways to leverage technology development to get more value with fewer resources. Alignment, globalization, centralization/decentralization, sourcing, co-development, technology intelligence, and intellectual property are all extensively covered. Advice is provided on how to ease implementation of these solutions, and several examples of the successes enjoyed by best-practice companies are detailed. Chapters cover: Global Trends in Automotive Systems Management of Technology Challenges in Automotive Technology Management Meeting Technology Management Challenges Best Practice Case Studies
Book

Fuel Cell Systems Explained, Second Edition

2003-05-01
Fuel cell technology is developing at a rapid pace, thanks to the increasing awareness of the need for pollution-free power sources. Moreover, new developments in catalysts and improved reliability have made fuel cells viable candidates in a road range of applications, from small power stations, to cars, to laptop computers and mobile phones. Building on the success of the first edition, Fuel Cell Systems Explained presents a balanced introduction to this growing area. "In summary, an altogether satisfying book that puts within its covers the academic tools necessary for explaining fuel cell systems on a multidisciplinary basis." - Power Engineering Journal "An excellent book...well written and produced."- Journal of Power and Energy
Standard

Crane Hoist Line Speed and Power Test Procedure

2017-06-07
CURRENT
J820_201706
This document applies primarily to mobile cranes that lift loads by means of a drum and hoist line mechanism. It can be used to determine the hoist line speed and power of other hoist line mechanisms, if the load can be held constant and hoist line travel distance is sufficient for the accuracy of the line speed measurements prescribed. This recommended practice applies to all mechanical, hydraulic, and electric powered hoist mechanisms.
Standard

Crane Hoist Line Speed and Power Test Code

1998-07-01
HISTORICAL
J820_199807
This code applies primarily to mobile cranes that lift loads by means of a drum and hoist line mechanism. It can be used to determine the hoist line speed and power of other hoist line mechanisms, if load can be held constant and hoist line travel distance is sufficient for the accuracy of the line speed measurements prescribed.
Book

CAESAR® Final Report - CD-ROM

2002-11-18
The CAESAR (Civilian American and European Surface Anthropometry Resource) research project was a landmark study that has brought us the most current data on civilian body measurements. This final report details the methodology of the study and the data gathering process. It gives detailed explanation on the survey instruments used, how the study was conducted and who was included to achieve a valid demographic sampling. The product provides a wealth of information on this large scale and statistically valid research project.
Standard

Reciprocating Internal Combustion Engines--Performance--Part 1: Standard Reference Conditions, Declarations of Power, Fuel and Lubricating Oil Consumptions, and Test Methods

1994-11-01
HISTORICAL
J3046/1_199411
This part of ISO 3046 specifies standard reference conditions and methods of declaring the power, fuel consumption, lubricating oil consumption, and test methods for reciprocating internal combustion (RIC) engines in commercial production using liquid or gaseous fuels. Where necessary, individual requirements are given for particular engine applications. This part of ISO 3046 covers RIC engines for land, rail-traction, and marine use, excluding engines used to propel agricultural tractors, road vehicles, and aircraft. This part of ISO 3046 may be applied to engines used to propel road construction and earthmoving machines, industrial trucks, and for other applications where no suitable International Standard for these engines exists. This part of ISO 3046 may be applied to tests on a test bed at the manufacturer's works and to tests on site.
Standard

Reciprocating Internal Combustion Engines--Performance--Part 1: Standard Reference Conditions, Declarations of Power, Fuel and Lubricating Oil Consumptions, and Test Methods

2005-04-25
CURRENT
J3046/1_200504
This part of ISO 3046 specifies standard reference conditions and methods of declaring the power, fuel consumption, lubricating oil consumption, and test methods for reciprocating internal combustion (RIC) engines in commercial production using liquid or gaseous fuels. Where necessary, individual requirements are given for particular engine applications. This part of ISO 3046 covers RIC engines for land, rail-traction, and marine use, excluding engines used to propel agricultural tractors, road vehicles, and aircraft. This part of ISO 3046 may be applied to engines used to propel road construction and earthmoving machines, industrial trucks, and for other applications where no suitable International Standard for these engines exists. This part of ISO 3046 may be applied to tests on a test bed at the manufacturer's works and to tests on site.
Standard

Internal Combustion Engines-Piston Rings Expander/Segment Oil Control Rings

1992-09-01
HISTORICAL
J2004_199210
This SAE Standard is equivalent to ISO Standard 6627 TR. Differences, where they exist, are shown in Appendix A with associated rationale. This SAE Standard specifies the dimensional features of commonly used oil control rings having two steel segments (rails) separated and expanded by one steel expander/spacer. The segments vary in width from 0.4 to 0.6 mm. The assembly width ranges from 2.5 to 4.75 mm. The 4.75 mm width is equivalent to existing 3/16 in applications. Expander design will vary considerably with piston ring manufacturer. The total circumferential deflection and the piston groove depth should be considered when designing these oil rings to optimize the fit of the ring assembly into the piston groove. This document applies to oil control rings up through 125 mm for reciprocating internal combustion engines. It may also be used for piston rings of compressors working under similar conditions.
Standard

Internal Combustion Engines-Piston Rings-Expander/Segment Oil Control Rings

1998-04-01
HISTORICAL
J2004_199804
This SAE Standard is equivalent to ISO Standard 6627 TR. Differences, where they exist, are shown in Appendix A with associated rationale. This SAE Standard specifies the dimensional features of commonly used oil control rings having two steel segments (rails) separated and expanded by one steel expander/spacer. The segments vary in width from 0.4 to 0.6 mm. The assembly width ranges from 2.5 to 4.75 mm. The 4.75 mm width is equivalent to existing 3/16 in applications. Expander design will vary considerably with piston ring manufacturer. The total circumferential deflection and the piston groove depth should be considered when designing these oil rings to optimize the fit of the ring assembly into the piston groove. This document applies to oil control rings up through 125 mm for reciprocating internal combustion engines. It may also be used for piston rings of compressors working under similar conditions.
Standard

Internal Combustion Engines--Piston Rings--Expander/Segment Oil Control Rings

2008-06-30
CURRENT
J2004_200806
This SAE Standard is equivalent to ISO Standard 6627 TR. Differences, where they exist, are shown in Appendix A with associated rationale. This SAE Standard specifies the dimensional features of commonly used oil control rings having two steel segments (rails) separated and expanded by one steel expander/spacer. The segments vary in width from 0.4 to 0.6 mm. The assembly width ranges from 2.5 to 4.75 mm. The 4.75 mm width is equivalent to existing 3/16 in applications. Expander design will vary considerably with piston ring manufacturer. The total circumferential deflection and the piston groove depth should be considered when designing these oil rings to optimize the fit of the ring assembly into the piston groove. This document applies to oil control rings up through 125 mm for reciprocating internal combustion engines. It may also be used for piston rings of compressors working under similar conditions.
Standard

Internal Combustion Engines--Piston Rings--Rectangular Rings

2008-06-30
CURRENT
J1997_200806
This SAE Standard specifies the essential dimensional features of R, b, and M rectangular piston ring types. Dimensional tables 8 and 9 offer the choice of two radial wall thicknesses: a. radial wall thickness "regular" (table 8); b. radial wall thickness "D/22" (table 9). The requirements of this document apply to rectangular rings for reciprocating internal combustion piston engines up to and including 200 mm diameter. They may also be used for piston rings of compressors working under similar conditions.
Standard

Internal Combustion Engines--Piston Rings--Rectangular Rings With Narrow Ring Width

1990-06-01
HISTORICAL
J1998_199006
This SAE Standard specifies the essential dimensional features of R, B, and M rectangular piston ring types with narrow ring width. Dimensional tables 8 and 9 allow for the use of cast iron (table 8) or steel (table 9). Since the modulus of elasticity of steel rings is higher than that of cast iron rings, the fluctuation in the surface pressure will become greater if the free gap is set as the reference for force. Therefore, forces are set using the surface pressure as the reference, in order to minimize the effect of the fluctuation. The requirements of this document apply to rectangular rings for reciprocating internal combustion engines up to and including 90 mm diameter for cast iron rings and up to and including 100 mm diameter for steel. They may also be used for piston rings of compressors working under similar conditions.
X