Refine Your Search

Topic

Author

Affiliation

Search Results

White Paper

REDUCING DOWNTIME THROUGH THE USE OF PREDICTIVE ANALYTICS AND TECHNICAL TRAINING ADVANCEMENTS

2018-01-05
WP-0007
The exponential increase in the number of aircraft and air travelers has triggered new innovations aimed to make airline services more reliable and consumer friendly. Quick and efficient maintenance actions with minimum downtime are the need of the hour. Another major challenge is ensuring maintenance personnel are trained effectively; technology like augmented reality and Virtual Maintenance Trainers (VMTs) may provide safe and efficient training in lieu of live, instructor-led arrangements. And while traditional User/Maintenance Manuals provide useful information when dealing with simple machines, when dealing with complex systems of systems and miniaturized technologies, like unmanned aerial vehicles (UAVs), new technologies like augmented reality can rapidly and effectively support the maintenance operations.
Standard

Refrigerant 12 Automotive Air-Conditioning Hose

2015-04-21
CURRENT
J51_201504
This SAE Standard covers reinforced hose, or hose assemblies, intended for conducting liquid and gaseous dichlorodifluoromethane (refrigerant 12) in automotive air-conditioning systems. The hose shall be designed to minimize permeation of refrigerant 12 and contamination of the system and to be serviceable over a temperature range of −30 to 120 °C (−22 to 248 °F). Specific construction details are to be agreed upon between user and supplier.1 NOTE—R12 refrigerant has been placed on a banned substance list due to its ozone depletion characteristics. SAE J51 specification will be phased out as new automotive A/C systems are using R134a. SAE J2064 is the Standard for refrigerant 134a hose. For refrigerant 134a use, refer to SAE J2064.
Standard

Spark Arrester Test Carbon

2013-03-26
CURRENT
J997_201303
This SAE Standard establishes physical properties required of SAE Coarse Test Carbon and SAE Fine Test Carbon and establishes test methods to ensure that these requirements are met.
Book

Meeting the Technology Management Challenges in the Automotive Industry

2000-02-25
In today's automotive industry, developing new products and systems is more important than ever before. Central to the creation of innovative products is technology development. However, managing technology development has often proven to be a difficult task for many American firms. This book provides instruction on how to make technology management more effective and efficient. It discusses several ways to leverage technology development to get more value with fewer resources. Alignment, globalization, centralization/decentralization, sourcing, co-development, technology intelligence, and intellectual property are all extensively covered. Advice is provided on how to ease implementation of these solutions, and several examples of the successes enjoyed by best-practice companies are detailed. Chapters cover: Global Trends in Automotive Systems Management of Technology Challenges in Automotive Technology Management Meeting Technology Management Challenges Best Practice Case Studies
Book

CAESAR® Final Report - CD-ROM

2002-11-18
The CAESAR (Civilian American and European Surface Anthropometry Resource) research project was a landmark study that has brought us the most current data on civilian body measurements. This final report details the methodology of the study and the data gathering process. It gives detailed explanation on the survey instruments used, how the study was conducted and who was included to achieve a valid demographic sampling. The product provides a wealth of information on this large scale and statistically valid research project.
Standard

SINTERED CARBIDE TOOLS

1977-02-01
HISTORICAL
J439_197702
This recommended practice covers methods for measuring or evaluating five properties or characteristics of sintered carbide which contribute significantly to the performance of sintered carbide tools. These properties are: hardness, specific gravity, apparent porosity, structure, and grain size. They are covered under separate headings below.
Standard

Sintered Carbide Tools

2018-01-09
CURRENT
J439_201801
This recommended practice covers methods for measuring or evaluating five properties or characteristics of sintered carbide which contribute significantly to the performance of sintered carbide tools. These properties are: hardness, specific gravity, apparent porosity, structure, and grain size. They are covered under separate headings below.
Standard

WROUGHT NICKEL AND NICKEL-RELATED ALLOYS

1976-07-01
HISTORICAL
J470_197607
This Report presents general information on over 50 alloys in which nickel either predominates or is a significant alloying element. It covers primarily wrought materials, and is not necessarily all inclusive. Values given are in most cases average or nominal, and if more precise values are required the producer(s) should be contacted. This report does not cover the so-called "superalloys," or the iron base stainless steels. Refer to SAE J467, Special Purpose Alloys, and SAE J405, Chemical Compositions of SAE Wrought Stainless Steels, respectively, for data on these alloys.
Standard

Wrought Nickel and Nickel-Related Alloys

2018-02-15
CURRENT
J470_201802
This Report presents general information on over 50 alloys in which nickel either predominates or is a significant alloying element. It covers primarily wrought materials, and is not necessarily all inclusive. Values given are in most cases average or nominal, and if more precise values are required the producer(s) should be contacted. This report does not cover the so-called "superalloys," or the iron base stainless steels. Refer to SAE J467, Special Purpose Alloys, and SAE J405, Chemical Compositions of SAE Wrought Stainless Steels, respectively, for data on these alloys.
Standard

Definition for Particle Size

1981-07-01
HISTORICAL
J391_198107
'Effective particle or domain size' is a phrase used in X-ray diffraction literature to describe the size of the coherent regions within a material which are diffracting. Coherency in this sense means diffracting as a unit. Small particle size causes X-ray line broadening and as such can be measured. It has been shown related to substructure as observed in transmission electron microscopy. Particle size is affected by hardening, cold working, and fatigue; conversely, there is increasing evidence that particle size, per se, affects both static and dynamic strength.
Standard

Definition for Particle Size

2011-06-01
CURRENT
J391_201106
"Effective particle or domain size" is a phrase used in X-ray diffraction literature to describe the size of the coherent regions within a material which are diffracting. Coherency in this sense means diffracting as a unit. Small particle size causes X-ray line broadening and as such can be measured. It has been shown related to substructure as observed in transmission electron microscopy. Particle size is affected by hardening, cold working, and fatigue; conversely, there is increasing evidence that particle size, per se, affects both static and dynamic strength.
Standard

Cleanliness Rating of Steels by the Magnetic Particle Method

2018-01-09
CURRENT
J421_201801
This SAE Recommended Practice provides a rating procedure for the cleanliness rating of steels by the magnetic particle method. The procedure is based on counting the number of indications (frequency) and employs a weighted value to obtain a severity factor. The method outlined is similar to that described in SAE Aerospace Material Specification AMS 2301.
Standard

Magnetic Particle Inspection

2018-01-10
CURRENT
J420_201801
The scope of this SAE Information Report is to provide general information relative to the nature and use of magnetic particles for nondestructive testing. The document is not intended to provide detailed technical information, but will serve as an introduction to the theory and capabilities of magnetic particle testing, and as a guide to more extensive references.
Standard

CLEANLINESS RATING OF STEELS BY THE MAGNETIC PARTICLE METHOD

1993-05-01
HISTORICAL
J421_199305
This SAE Recommended Practice provides a rating procedure for the cleanliness rating of steels by the magnetic particle method. The procedure is based on counting the number of indications (frequency) and employs a weighted value to obtain a severity factor. The method outlined is similar to that described in SAE Aerospace Material Specification AMS 2301.
X