Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

An Investigation of Thermal Effects on the Hybrid III Thorax Utilizing Finite Element Method

2001-03-05
2001-01-0767
The advent of the Hybrid III crash test dummy marked the beginning of biofidelic anthropomorphic test devices. During the development of its critical components, notably the head, neck, knee, and thorax, biomechanical cadaver test results were incorporated into the design. The result was a dummy that represented the 50th percentile male during idealized impacts. In order to achieve a more biofidelic response from the components, many exotic materials and unique designs were utilized. The thorax, for instance, incorporates a spring steel rib design laminated with a viscoelastic polymeric composite material to damp the response. This combination results in the proper hysteretic losses necessary to model the human thorax under impact loading conditions. The disadvantage of this design is that the damping material properties are highly sensitive to temperature. A variation of more than 5 degrees Fahrenheit dramatically affects the response of the thorax.
Technical Paper

Measurement and Modeling of Tire Forces on a Low Coefficient Surface

2006-04-03
2006-01-0559
There exists a fairly extensive set of tire force measurements performed on dry pavement. But in order to develop a low-coefficient of friction tire model, a set of tire force measurements made on wet pavement is required. Using formulations and parameters obtained on dry roads, and then reducing friction level to that of a wet road is not sufficient to model tire forces in a high fidelity simulation. This paper describes the process of more accurately modeling low coefficient tire forces on the National Advanced Driving Simulator (NADS). It is believed that the tire model improvements will be useful in many types of NADS simulations, including ESC and other advanced vehicle technology studies. In order to produce results that would come from a road surface that would be sufficiently slippery, a set of tires were shaved to 4/32 inches and sent to a tire-testing lab for measurement.
Technical Paper

The Impact of Worn Shocks on Vehicle Handling and Stability

2006-04-03
2006-01-0563
The intent of this research is to understand the effects worn dampers have on vehicle stability and safety through dynamic model simulation. Dampers, an integral component of a vehicle's suspension system, play an important role in isolating road disturbances from the driver by controlling the motions of the sprung and unsprung masses. This paper will show that a decrease in damping leads to excessive body motions and a potentially unstable vehicle. The concept of poor damping affecting vehicle stability is well established through linear models. The next step is to extend this concept for non-linear models. This is accomplished through creating a vehicle simulation model and executing several driving maneuvers with various damper characteristics. The damper models used in this study are based on splines representing peak force versus velocity relationships.
X