Refine Your Search

Topic

Search Results

Standard

Ball Joints

2012-10-15
CURRENT
J490_201210
This SAE Standard covers the general and dimensional data for various types of ball joints with inch threads commonly used on control linkages in automotive, marine, and construction and industrial equipment applications. Inasmuch as the load carrying and wear capabilities of ball joints vary considerably with their design and fabrication, it is suggested that the manufacturers be consulted in regard to these features and for recommendations relating to application of the different types and styles available. The inclusion of dimensional data in this standard is not intended to imply that all the products described are stock production sizes. Consumers are requested to consult with manufacturers concerning availability of stock production parts.
Standard

Metric Ball Joints

2012-10-15
CURRENT
J2213_201210
This SAE Standard covers the general and dimensional data for industrial quality ball joints commonly used on control linkages in metric automotive, marine, construction, and industrial equipment applications.
Standard

Decorative Anodizing Specification for Automotive Applications

2013-03-28
CURRENT
J1974_201303
This SAE Recommended Practice is aimed at ensuring high-quality products of anodized aluminum automotive components in terms of durability and appearance. Decorative sulfuric acid anodizing has been well developed over the last several decades in the aluminum industry. Exterior and interior performance demonstrated that parts processed to this document meet long-term durability requirements. Since the treatment of processing variables is outside the scope of this document, it is important for applicators of this coating to develop an intimate knowledge of their process, and control all parameters that affect the quality of the end product. The use of techniques such as statistical process control (SPC), capability studies, design of experiments, process optimization, etc., are critical to produce material of consistently high quality.
Standard

Electroplating of Nickel and Chromium on Metal Parts - Automotive Ornamentation and Hardware

2012-05-11
CURRENT
J207_201205
This standard covers requirements for several types and grades of electrodeposited nickel/chromium coatings on ferrous or copper alloy basis metals and copper/nickel/chromium on zinc or aluminum alloys for the finishing and corrosion protection of decorative ornamentation and hardware of motor vehicles and marine controls and fittings. Four grades of coatings are provided to correlate with the service conditions under which each is expected to provide satisfactory performance, namely: very severe, severe, moderate, and mild. Definitions and typical examples of these service conditions are provided in Appendix A.1 Information contained in this document generally conforms to the information contained in ASTM B 456, Specification for Electrodeposited Coatings of Nickel plus Chromium.
Standard

Laboratory Corrosion/Fatigue Testing of Vehicle Suspension Coil Springs

2007-06-15
HISTORICAL
J2800_200706
This lab test procedure should be used when evaluating the combined corrosion and fatigue performance for a particular coating system, substrate, process and design. The test is intended to provide an A to B comparison of a proposed coil spring design versus an existing field validated coil spring when subjected to the combined effects of corrosion and fatigue. The corrosion mechanisms covered by this test include general, cosmetic and pitting corrosion. Fatigue testing covers the maximum design stress and/or stress range of the coil spring design (typically defined as excursion from jounce to rebound positions in a vehicle). The effects of gravel and heat are simulated by pre-conditioning the springs prior to fatigue testing. Time dependant corrosion mechanisms such as stress corrosion cracking are not addressed with this test.
Standard

Laboratory Corrosion/Fatigue Testing of Vehicle Suspension Coil Springs

2016-04-01
CURRENT
J2800_201604
This lab test procedure should be used when evaluating the combined corrosion and fatigue performance for a particular coating system, substrate, process and design. The test is intended to provide an A to B comparison of a proposed coil spring design versus an existing field validated coil spring when subjected to the combined effects of corrosion and fatigue. The corrosion mechanisms covered by this test include general, cosmetic and pitting corrosion. Fatigue testing covers the maximum design stress and/or stress range of the coil spring design (typically defined as excursion from jounce to rebound positions in a vehicle). The effects of gravel and heat are simulated by pre-conditioning the springs prior to fatigue testing. Time dependant corrosion mechanisms such as stress corrosion cracking are not addressed with this test.
Standard

Steering Ball Studs and Socket Assemblies

2012-10-15
CURRENT
J491_201210
This SAE Recommended Practice has been established for the purpose of providing design criteria and suggested dimensional proportions which may be used for ball studs and ball stud socket assemblies as used on steering systems or control mechanisms of passenger vehicles, trucks and off-road equipment. The recommended practice does not cover all applications. It is intended to provide assistance in obtaining functional satisfaction and interchangeability. The inclusion of dimensional data in this report is not intended to imply that all the products described are stock production sizes. Consumers are requested to consult with manufacturers concerning stock production parts.
Standard

Lead-Free Replacement Paints

1984-06-01
HISTORICAL
J1437_198406
The purpose of this SAE Recommended Practice is to establish recommended lead-free paint color offsets to two specific color standards currently based on lead-containing pigments. The colors are identified throughout the industry as 'School Bus Yellow' and 'Highway Orange.'
Standard

Undervehicle Coupon Corrosion Tests

2016-04-05
CURRENT
J1293_201604
This document is a road test procedure for comparing the corrosion resistance of both coated and uncoated sheet steels in an undervehicle deicing salt environment.
Standard

UNDERVEHICLE COUPON CORROSION TESTS

1990-01-01
HISTORICAL
J1293_199001
This document is a road test procedure for comparing the corrosion resistance of both coated and uncoated sheet steels in an undervehicle deicing salt environment.
Standard

Body Corrosion - A Comprehensive Introduction

2016-04-05
CURRENT
J1617_201604
The mechanism of automotive body corrosion is scientific, based on established laws of chemistry and physics. Yet there are many opinions related to the cause of body corrosion, not always based on scientific axioms. The purpose of this SAE Information Report is to present a basic understanding of the types of body corrosion, the factors that contribute to body corrosion, the testing procedures, evaluation of corrosion performance, and glossary of related terms.
Standard

BODY CORROSION—A COMPREHENSIVE INTRODUCTION

1993-11-01
HISTORICAL
J1617_199311
The mechanism of automotive body corrosion is scientific, based on established laws of chemistry and physics. Yet there are many opinions related to the cause of body corrosion, not always based on scientific axioms. The purpose of this SAE Information Report is to present a basic understanding of the types of body corrosion, the factors that contribute to body corrosion, the testing procedures, evaluation of corrosion performance, and glossary of related terms.
Standard

Prevention of Corrosion of Motor Vehicle Body and Chassis Components

2016-04-05
CURRENT
J447_201604
This SAE Information Report provides automotive engineers with the basic principles of corrosion, design guidelines to minimize corrosion, and a review of the various materials, treatments, and processes available to inhibit corrosion of both decorative and functional body and chassis components.
Standard

PREVENTION OF CORROSION OF MOTOR VEHICLE BODY AND CHASSIS COMPONENTS

1995-07-01
HISTORICAL
J447_199507
This SAE Information Report provides automotive engineers with the basic principles of corrosion, design guidelines to minimize corrosion, and a review of the various materials, treatments, and processes available to inhibit corrosion of both decorative and functional body and chassis components.
Standard

GUIDELINES FOR LABORATORY CYCLIC CORROSION TEST PROCEDURES FOR PAINTED AUTOMOTIVE PARTS

1993-10-13
HISTORICAL
J1563_199310
These guidelines are intended for those engineers and scientists who evaluate the corrosion performance of painted automotive parts in laboratory cyclic tests. The guidelines are intended to help ensure that the results of the tests can be used to reach conclusions concerning the variables under study without being confounded by the test procedure itself. The guidelines also serve as a means to assist users of this type of test in obtaining good inter-laboratory agreement of results.
Standard

Guidelines for Laboratory Cyclic Corrosion Test Procedures for Painted Automotive Parts

2016-04-05
CURRENT
J1563_201604
These guidelines are intended for those engineers and scientists who evaluate the corrosion performance of painted automotive parts in laboratory cyclic tests. The guidelines are intended to help ensure that the results of the tests can be used to reach conclusions concerning the variables under study without being confounded by the test procedure itself. The guidelines also serve as a means to assist users of this type of test in obtaining good inter-laboratory agreement of results.
Standard

STAINLESS STEEL 17-7 PH SPRING WIRE AND SPRINGS

1994-07-01
HISTORICAL
J217_199407
This SAE Recommended Practice covers a high-quality corrosion-resisting steel wire, cold drawn, formed, and heat treated to produce uniform mechanical properties. It is magnetic in all conditions. It is intended for the manufacture of springs and wire forms that are to be heat treated after forming to enhance the spring properties. This document also covers processing requirements of the springs and forms fabricated from this wire.
Standard

Stainless Steel 17-7 PH Spring Wire and Springs

2016-04-05
CURRENT
J217_201604
This SAE Recommended Practice covers a high-quality corrosion-resisting steel wire, cold drawn, formed, and heat treated to produce uniform mechanical properties. It is magnetic in all conditions. It is intended for the manufacture of springs and wire forms that are to be heat treated after forming to enhance the spring properties. This document also covers processing requirements of the springs and forms fabricated from this wire.
X