Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Overview of Techniques for Measuring Friction Using Bench Tests and Fired Engines

2000-06-19
2000-01-1780
This paper presents an overview of techniques for measuring friction using bench tests and fired engines. The test methods discussed have been developed to provide efficient, yet realistic, assessments of new component designs, materials, and lubricants for in-cylinder and overall engine applications. A Cameron-Plint Friction and Wear Tester was modified to permit ring-in-piston-groove movement by the test specimen, and used to evaluate a number of cylinder bore coatings for friction and wear performance. In a second study, it was used to evaluate the energy conserving characteristics of several engine lubricant formulations. Results were consistent with engine and vehicle testing, and were correlated with measured fuel economy performance. The Instantaneous IMEP Method for measuring in-cylinder frictional forces was extended to higher engine speeds and to modern, low-friction engine designs.
Technical Paper

Integrated, Feed-Forward Hybrid Electric Vehicle Simulation in SIMULINK and its Use for Power Management Studies

2001-03-05
2001-01-1334
A hybrid electric vehicle simulation tool (HE-VESIM) has been developed at the Automotive Research Center of the University of Michigan to study the fuel economy potential of hybrid military/civilian trucks. In this paper, the fundamental architecture of the feed-forward parallel hybrid-electric vehicle system is described, together with dynamic equations and basic features of sub-system modules. Two vehicle-level power management control algorithms are assessed, a rule-based algorithm, which mainly explores engine efficiency in an intuitive manner, and a dynamic-programming optimization algorithm. Simulation results over the urban driving cycle demonstrate the potential of the selected hybrid system to significantly improve vehicle fuel economy, the improvement being greater when the dynamic-programming power management algorithm is applied.
Technical Paper

Effect of Variable Geometry Turbine (VGT) on Diesel Engine and Vehicle System Transient Response

2001-03-05
2001-01-1247
Variable geometry turbines (VGT) are of particular interest to advanced diesel powertrains for future conventional trucks, since they can dramatically improve system transient response to sudden changes in speed and load, characteristic of automotive applications. VGT systems are also viewed as the key enabler for the application of the EGR system for reduction of heavy-duty diesel emissions. This paper applies an artificial neural network methodology to VGT modeling in order to enable representation of the VGT characteristics for any blade (nozzle) position. Following validation of the ANN model of the baseline, fixed geometry turbine, the VGT model is integrated with the diesel engine system. The latter is linked to the driveline and the vehicle dynamics module to form a complete, high-fidelity vehicle simulation.
Technical Paper

Measurements and Predictions of Steady-State and Transient Stress Distributions in a Diesel Engine Cylinder Head

1999-03-01
1999-01-0973
A combined experimental and analytical approach was followed in this work to study stress distributions and causes of failure in diesel cylinder heads under steady-state and transient operation. Experimental studies were conducted first to measure temperatures, heat fluxes and stresses under a series of steady-state operating conditions. Furthermore, by placing high temperature strain gages within the thermal penetration depth of the cylinder head, the effect of thermal shock loading under rapid transients was studied. A comparison of our steady-state and transient measurements suggests that the steady-state temperature gradients and the level of temperatures are the primary causes of thermal fatigue in cast-iron cylinder heads. Subsequently, a finite element analysis was conducted to predict the detailed steady-state temperature and stress distributions within the cylinder head. A comparison of the predicted steady-state temperatures and stresses compared well with our measurements.
Technical Paper

A Prototype Thin-Film Thermocouple for Transient Heat Transfer Measurements in Ceramic-Coated Combustion Chambers

1990-02-01
900691
A prototype chromel-alumel overlapping thin-film thermocouple (TFTC) has been developed for transient heat transfer measurements in ceramic-coated combustion chambers. The TFTC has been evaluated using various metallurgical techniques such as scanning electron microscopy, energy dispersive x-ray detection, and Auger electron spectroscopy. The sensor was calibrated against a standard thermocouple in ice, boiling water, and a furnace at 1000°C. The microstructural and chemical analysis of the thin-films showed the alumel film composition was very similar to the bulk material, while the chromel film varied slightly. An initial set of ceramic plug surface temperatures was taken while motoring and firing the engine at 1900 rpm to verify thermocouple operation. The data shows a 613 K mean temperature and a 55 K swing for the ceramic surface compared with a 493 K mean temperature and a 20 K swing for the metal surface at the same location.
Technical Paper

Development and Use of a Vehicle Powertrain Simulation for Fuel Economy and Performance Studies

1990-02-01
900619
A personal computer-based vehicle powertrain simulation (VPS) is developed to predict fuel economy and performance. This paper summarizes the governing equations used in the model. Then the different simulation techniques are described with emphasis on the more complicated time-dependent simulation. The simulation is validated against constant speed and variable cycle test track data obtained for a 5 ton army truck. Then the simulation is used to compare the performance of the 5 ton truck when powered by a cooled and natually aspirated engine, a cooled and turbocharged engine, and an uncooled and turbocharged engine. Studies of the effect of payload, tire efficiency, and drag coefficient on vehicle performance are also conducted, as well as a performance comparison between manual and automatic transmissions. It is concluded that the VPS code can provide good predictions of vehicle fuel economy, and thus is a useful tool in designing and evaluating vehicle powertrains.
Technical Paper

Design Optimization of the Piston Compounded Adiabatic Diesel Engine Through Computer Simulation

1993-03-01
930986
This paper describes the concept and a practical implementation of piston-compounding. First, a detailed computer simulation of the piston-compounded engine is used to shed light into the thermodynamic events associated with the operation of this engine, and to predict the performance and fuel economy of the entire system. Starting from a baseline design, the simulation is used to investigate changes in system performance as critical parameters are varied. The latter include auxiliary cylinder and interconnecting manifold volumes for a given main cylinder volume, auxiliary cylinder valve timings in relation to main cylinder timings, and degree of heat loss to the coolant. Optimum designs for either highest power density or highest thermal efficiency (54%) are thus recommended. It is concluded that a piston-compounded adiabatic engine concept is a promising future powerplant.
Technical Paper

The Effects of Ceramic Coatings on Diesel Engine Performance and Exhaust Emissions

1991-02-01
910460
An experimental investigation of the effects of ceramic coatings on diesel engine performance and exhaust emissions was conducted. Tests were carried out over a range of engine speeds at full load for a standard metal piston and two pistons insulated with 0.5 mm and 1.0 mm thick ceramic coatings. The thinner (0.5 mm) ceramic coating resulted in improved performance over the baseline engine, with the gains being especially pronounced with decreasing engine speed. At 1000 rpm, the 0.5 mm ceramic coated piston produced 10% higher thermal efficiency than the metal piston. In contrast, the relatively thicker coating (1 mm), resulted in as much as 6% lower thermal efficiency compared to baseline. On the other hand, the insulated engines consistently presented an attractive picture in terms of their emissions characteristics. Due to the more complete combustion in the insulated configurations, exhaust CO levels were between 30% and 60% lower than baseline levels.
Technical Paper

A High Temperature and High Pressure Evaporation Model for the KIVA-3 Code

1996-02-01
960629
A high pressure and high temperature evaporation model was implemented in the KIVA-3 multidimensional engine simulation. The most significant features of the new evaporation model are: the effects of Stefan flow on transfer rates are included; internal circulation is accounted using the effective conductivity model of Abramzon and Sirignano [1]; equilibrium composition is calculated at high pressures using a real gas equation of state; and properties are evaluated as functions of temperature, pressure and composition. The evaporation of a continuous spray of n-dodecane injected in a chamber pressurized with nitrogen gas was simulated using the two models. Predictions of the evaporation rate, the spray penetration and fuel vapor distribution by the two models were significantly different. The differences persisted over a range of ambient pressures and temperatures, injection velocities, initial droplet sizes and fuel volatilities.
Technical Paper

An Early-Design Methodology for Predicting Transient Fuel Economy and Catalyst-Out Exhaust Emissions

1997-05-19
971838
An early-design methodology for predicting both expected fuel economy and catalyst-out CO, HC and NOx concentrations during arbitrarily-defined transient cycles is presented. The methodology is based on utilizing a vehicle-powertrain model with embedded maps of fully warmed up engine-out performance and emissions, and appropriate temperature-dependent correction factors to account for not fully warmed up conditions during transients. Similarly, engine-out emissions are converted to catalyst-out emissions using conversion efficiencies based on the catalyst brick temperature. A crucial element of the methodology is hence the ability to predict heat flows and component temperatures in the engine and the exhaust system during transients, consistent with the data available during concept definition and early design phases.
Technical Paper

Fuel Economy and Power Benefits of Cetane-Improved Fuels in Heavy-Duty Diesel Engines

1997-10-01
972900
A program to explore the effects of natural and additive-derived cetane on various aspects of diesel performance and combustion has been carried out. Procedures have been developed to measure diesel engine fuel consumption and power to a high degree of precision. These methods have been used to measure fuel consumption and power in three heavy-duty direct-injection diesel engines. The fuel matrix consisted of three commercial fuels of cetane number (CN) of 40-42, the same fuels raised to CN 48-50 with a cetane improver additive, and three commercial fuels of base CN 47-50. The engines came from three different U.S. manufacturers and were of three different model years and emissions configurations. Both fuel economy and power were found to be significantly higher for the cetane-improved fuels than for the naturally high cetane fuels. These performance advantages derive mainly from the higher volumetric heat content inherent to the cetane-improved fuels.
Technical Paper

Turbulence Intensity Calculation from Cylinder Pressure Data in a High Degree of Freedom Spark-Ignition Engine

2010-04-12
2010-01-0175
The number of control actuators available on spark-ignition engines is rapidly increasing to meet demand for improved fuel economy and reduced exhaust emissions. The added complexity greatly complicates control strategy development because there can be a wide range of potential actuator settings at each engine operating condition, and map-based actuator calibration becomes challenging as the number of control degrees of freedom expand significantly. Many engine actuators, such as variable valve actuation and flow control valves, directly influence in-cylinder combustion through changes in gas exchange, mixture preparation, and charge motion. The addition of these types of actuators makes it difficult to predict the influences of individual actuator positioning on in-cylinder combustion without substantial experimental complexity.
Technical Paper

Comparison of Diesel Oxidation Catalyst Performance on an Engine and a Gas Flow Reactor

2007-04-16
2007-01-0231
This paper analyzes and compares reactor and engine behavior of a diesel oxidation catalyst (DOC) in the presence of conventional diesel exhaust and low temperature premixed compression ignition (PCI) diesel exhaust. Surrogate exhaust mixtures of n-undecane (C11H24), ethene (C2H4), CO, O2, H2O, NO and N2 are defined for conventional and PCI combustion and used in the gas flow reactor tests. Both engine and reactor tests use a DOC containing platinum, palladium and a hydrocarbon storage component (zeolite). On both the engine and reactor, the composition of PCI exhaust increases light-off temperature relative to conventional combustion. However, while nominal conditions are similar, the catalyst behaves differently on the two experimental setups. The engine DOC shows higher initial apparent HC conversion efficiencies because the engine exhaust contains a higher fraction of trappable (i.e., high boiling point) HC.
Technical Paper

Control of a Multi-Cylinder HCCI Engine During Transient Operation by Modulating Residual Gas Fraction to Compensate for Wall Temperature Effects

2007-04-16
2007-01-0204
The thermal conditions of an engine structure, in particular the wall temperatures, have been shown to have a great effect on the HCCI engine combustion timing and burn rates through wall heat transfer, especially during transient operations. This study addresses the effects of thermal inertia on combustion in an HCCI engine. In this study, the control of combustion timing in an HCCI engine is achieved by modulating the residual gas fraction (RGF) while considering the wall temperatures. A multi-cylinder engine simulation with detailed geometry is carried out using a 1-D system model (GT-Power®) that is linked with Simulink®. The model includes a finite element wall temperature solver and is enhanced with original HCCI combustion and heat transfer models. Initially, the required residual gas fraction for optimal BSFC is determined for steady-state operation. The model is then used to derive a map of the sensitivity of optimal residual gas fraction to wall temperature excursions.
Journal Article

An Evaluation of Residual Gas Fraction Measurement Techniques in a High Degree of Freedom Spark Ignition Engine

2008-04-14
2008-01-0094
Stringent fuel economy and emissions regulations have driven development of new mixture preparation technologies and increased spark-ignition engine complexity. Additional degrees of freedom, brought about by devices such as cam phasers and charge motion control valves, enable greater range and flexibility in engine control. This permits significant gains in fuel efficiency and emission control, but creates challenges related to proper engine control and calibration techniques. Accurate experimental characterization of high degree of freedom engines is essential for addressing the controls challenge. In particular, this paper focuses on the evaluation of three experimental residual gas fraction measurement techniques for use in a spark ignition engine equipped with dual-independent variable camshaft phasing (VVT).
Technical Paper

Characterizing the Effect of Combustion Chamber Deposits on a Gasoline HCCI Engine

2006-10-16
2006-01-3277
Homogenous Charge Compression Ignition (HCCI) engines offer a good potential for achieving high fuel efficiency while virtually eliminating NOx and soot emissions from the exhaust. However, realizing the full fuel economy potential at the vehicle level depends on the size of the HCCI operating range. The usable HCCI range is determined by the knock limit on the upper end and the misfire limit at the lower end. Previously proven high sensitivity of the HCCI process to thermal conditions leads to a hypothesis that combustion chamber deposits (CCD) could directly affect HCCI combustion, and that insight about this effect can be helpful in expanding the low-load limit. A combustion chamber conditioning process was carried out in a single-cylinder gasoline-fueled engine with exhaust re-breathing to study CCD formation rates and their effect on combustion. Burn rates accelerated significantly over the forty hours of running under typical HCCI operating conditions.
Technical Paper

Engine-in-the-Loop Testing for Evaluating Hybrid Propulsion Concepts and Transient Emissions - HMMWV Case Study

2006-04-03
2006-01-0443
This paper describes a test cell setup for concurrent running of a real engine and a vehicle system simulation, and its use for evaluating engine performance when integrated with a conventional and a hybrid electric driveline/vehicle. This engine-in-the-loop (EIL) system uses fast instruments and emission analyzers to investigate how critical in-vehicle transients affect engine system response and transient emissions. Main enablers of the work include the highly dynamic AC electric dynamometer with the accompanying computerized control system and the computationally efficient simulation of the driveline/vehicle system. The latter is developed through systematic energy-based proper modeling that tailors the virtual model to capture critical powertrain transients while running in real time. Coupling the real engine with the virtual driveline/vehicle offers a chance to easily modify vehicle parameters, and even study two different powertrain configurations.
Technical Paper

Simulation of an Integrated Starter Alternator (ISA) System for the HMMWV

2006-04-03
2006-01-0442
The development and use of a simulation of an Integrated Starter Alternator (ISA) for a High Mobility Multi-purpose Wheeled Vehicle (HMMWV) is presented here. While the primary purpose of an ISA is to provide electric power for additional accessories, it can also be utilized for mild hybridization of the powertrain. In order to explore ISA's potential for improving HMMWV's fuel economy, an ISA model capable of both producing and absorbing mechanical power has been developed in Simulink. Based on the driver's power request and the State of Charge of the battery (SOC), the power management algorithm determines whether the ISA should contribute power to, or absorb power from the crankshaft. The system is also capable of capturing some of the braking energy and using it to charge the battery. The ISA model and the power management algorithm have been integrated in the Vehicle-Engine SIMulation (VESIM), a SIMULINK-based vehicle model previously developed at the University of Michigan.
Technical Paper

Transient Diesel Emissions: Analysis of Engine Operation During a Tip-In

2006-04-03
2006-01-1151
This study investigates the impact of transient engine operation on the emissions formed during a tip-in procedure. A medium-duty production V-8 diesel engine is used to conduct experiments in which the rate of pedal position change is varied. Highly-dynamic emissions instrumentation is implemented to provide real-time measurement of NOx and particulate. Engine subsystems are analyzed to understand their role in emissions formation. As the rate of pedal position change increases, the emissions of NOx and particulates are affected dramatically. An instantaneous load increase was found to produce peak NOx values 1.8 times higher and peak particulate concentrations an order of magnitude above levels corresponding to a five-second ramp-up. The results provide insight into relationship between driver aggressiveness and diesel emissions applicable to development of drive-by-wire systems. In addition, they provide direct guidance for devising low-emission strategies for hybrid vehicles.
Technical Paper

Optimal Engine Calibration for Individual Driving Styles

2008-04-14
2008-01-1367
Increasing functionality of electronic control units has enhanced our ability to control engine operation utilizing calibration static maps that provide the values of several controllable variables. State-of-the-art simulation-based calibration methods permit the development of these maps with respect to extensive steady-state and limited transient operation of particular driving cycles. However, each individual driving style is different and rarely meets those test conditions. An alternative approach was recently implemented that considers the derivation of these maps while the engine is running the vehicle. In this approach, a self-learning controller selects in real time the optimum values of the controllable variables for the sequences of engine operating point transitions, corresponding to the driver's driving style.
X