Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Sensitivity Analysis of Achieving a Reach Task within a Vehicle Considering Joint Angle Variability

2012-04-16
2012-01-0058
Human body size, shape, stature, joint range of motion, joint strength, and other factors vary from one person to another. Even for a single person, anthropometric data, such as weights and joint strengths, change with time. Due to this variability, different people adapt different postures to perform the same reach task within a vehicle. Even for the same person and reach task, postures will vary with time. Therefore, it is important to consider the reliability of achieving a reach task within a vehicle to create a better design for vehicle controls, enhance driver safety, and increase the level of accommodation for all types of drivers. In this study, we will present a reliability/probability approach to gain insights into driver reach tasks with uncertainty. Sensitivity levels are found to determine the importance of each joint to the reach tasks. A digital human upper body model with 21 degrees of freedom (DOFs) is introduced to demonstrate the probability approach.
Technical Paper

Restrained and Unrestrained Driver Reach Barriers

2004-06-15
2004-01-2199
Design and packaging of automotive interiors and airplane cockpits has become a science in itself, particularly in recent years where safety is paramount. There are various methods for restraining operators in their seats, including fitting an operator, such as a race car driver or pilot, with two seat belts, one for each side of the body, a three point restraining system as in commercial vehicles, and a lap belt as in some trucks and other types of vehicles. Moreover, significant experimental efforts have been made to study driver reach and barriers since they directly affect performance and safety. This paper presents a rigorous formulation for addressing the reach envelope and barriers therein of a 3-point restrained driver compared with a lap-belt-restrained driver. The formulation is based on a kinematic model of the driver, which characterizes the upper body and arm as 7 degrees of freedom (DOF) for an unrestrained and 4DOF for a 3-point restrained driver.
X