Refine Your Search

Topic

Search Results

Technical Paper

Development of an In-Cylinder Heat Transfer Model with Compressibility Effects on Turbulent Prandtl Number, Eddy Viscosity Ratio and Kinematic Viscosity Variation

2009-04-20
2009-01-0702
In-cylinder heat transfer has strong effects on engine performance and emissions and heat transfer modeling is closely related to the physics of the thermal boundary layer, especially the effects of conductivity and Prandtl number inside the thermal boundary layer. Compressibility effects on the thermal boundary layer are important issues in multi-dimensional in-cylinder heat transfer modeling. Nevertheless, the compressibility effects on kinematic viscosity and the variation of turbulent Prandtl number and eddy viscosity ratio have not been thoroughly investigated. In this study, an in-cylinder heat transfer model is developed by introducing compressibility effects on turbulent Prandtl number, eddy viscosity ratio and kinematic viscosity variation with a power-law approximation. This new heat transfer model is implemented to a spark-ignition engine with a coherent flamelet turbulent combustion model and the RNG k- turbulence model.
Technical Paper

Turbulence Intensity Calculation from Cylinder Pressure Data in a High Degree of Freedom Spark-Ignition Engine

2010-04-12
2010-01-0175
The number of control actuators available on spark-ignition engines is rapidly increasing to meet demand for improved fuel economy and reduced exhaust emissions. The added complexity greatly complicates control strategy development because there can be a wide range of potential actuator settings at each engine operating condition, and map-based actuator calibration becomes challenging as the number of control degrees of freedom expand significantly. Many engine actuators, such as variable valve actuation and flow control valves, directly influence in-cylinder combustion through changes in gas exchange, mixture preparation, and charge motion. The addition of these types of actuators makes it difficult to predict the influences of individual actuator positioning on in-cylinder combustion without substantial experimental complexity.
Technical Paper

Development and Use of a Computer Simulation of the Turbocompounded Diesel System for Engine Performance and Component Heat Transfer Studies

1986-03-01
860329
A computer simulation of the turbocharged turbocompounded direct-injection diesel engine system has been developed in order to study the performance characteristics of the total system as major design parameters and materials are varied. Quasi-steady flow models of the compressor, turbines, manifolds, intercooler, and ducting are coupled with a multi-cylinder reciprocator diesel model where each cylinder undergoes the same thermodynamic cycle. Appropriate thermal loading models relate the heat flow through critical system components to material properties and design details. This paper describes the basic system models and their calibration and validation against available experimental engine test data. The use of the model is illustrated by predicting the performance gains and the component design trade-offs associated with a partially insulated engine achieving a 40 percent reduction in heat loss over a baseline cooled engine.
Technical Paper

Modeling of Diesel Combustion and NO Emissions Based on a Modified Eddy Dissipation Concept

2004-03-08
2004-01-0107
This paper reports the development of a model of diesel combustion and NO emissions, based on a modified eddy dissipation concept (EDC), and its implementation into the KIVA-3V multidimensional simulation. The EDC model allows for more realistic representation of the thin sub-grid scale reaction zone as well as the small-scale molecular mixing processes. Realistic chemical kinetic mechanisms for n-heptane combustion and NOx formation processes are fully incorporated. A model based on the normalized fuel mass fraction is implemented to transition between ignition and combustion. The modeling approach has been validated by comparison with experimental data for a range of operating conditions. Predicted cylinder pressure and heat release rates agree well with measurements. The predictions for NO concentration show a consistent trend with experiments. Overall, the results demonstrate the improved capability of the model for predictions of the combustion process.
Technical Paper

An Optimization Study of Manufacturing Variation Effects on Diesel Injector Design with Emphasis on Emissions

2004-03-08
2004-01-1560
This paper investigates the effects of manufacturing variations in fuel injectors on the engine performance with emphasis on emissions. The variations are taken into consideration within a Reliability-Based Design Optimization (RBDO) framework. A reduced version of Multi-Zone Diesel engine Simulation (MZDS), MZDS-lite, is used to enable the optimization study. The numerical noise of MZDS-lite prohibits the use of gradient-based optimization methods. Therefore, surrogate models are developed to filter out the noise and to reduce computational cost. Three multi-objective optimization problems are formulated, solved and compared: deterministic optimization using MZDS-lite, deterministic optimization using surrogate models and RBDO using surrogate models. The obtained results confirm that manufacturing variation effects must be taken into account in the early product development stages.
Technical Paper

Control of a Multi-Cylinder HCCI Engine During Transient Operation by Modulating Residual Gas Fraction to Compensate for Wall Temperature Effects

2007-04-16
2007-01-0204
The thermal conditions of an engine structure, in particular the wall temperatures, have been shown to have a great effect on the HCCI engine combustion timing and burn rates through wall heat transfer, especially during transient operations. This study addresses the effects of thermal inertia on combustion in an HCCI engine. In this study, the control of combustion timing in an HCCI engine is achieved by modulating the residual gas fraction (RGF) while considering the wall temperatures. A multi-cylinder engine simulation with detailed geometry is carried out using a 1-D system model (GT-Power®) that is linked with Simulink®. The model includes a finite element wall temperature solver and is enhanced with original HCCI combustion and heat transfer models. Initially, the required residual gas fraction for optimal BSFC is determined for steady-state operation. The model is then used to derive a map of the sensitivity of optimal residual gas fraction to wall temperature excursions.
Technical Paper

Quasi-Dimensional Computer Simulation of the Turbocharged Spark-Ignition Engine and its Use for 2- and 4-Valve Engine Matching Studies

1991-02-01
910075
A quasi-dimensional computer simulation of the turbocharged spark-ignition engine has been developed in order to study system performance as various design parameters and operating conditions are varied. The simulation is of the “filling and emptying” type. Quasi-steady flow models of the compressor, intercooler, manifolds, turbine, wastegate, and ducting are coupled with a multi-cylinder engine model where each cylinder undergoes the same thermodynamic cycle. A turbulent entrainment model of the combustion process is used, thus allowing for studies of the effects of various combustion chamber shapes and turbulence parameters on cylinder pressure, temperature, NOx emissions and overall engine performance. Valve open areas are determined either based on user supplied valve lift data or using polydyne-generated cam profiles which allow for variable valve timing studies.
Technical Paper

Design Optimization of the Piston Compounded Adiabatic Diesel Engine Through Computer Simulation

1993-03-01
930986
This paper describes the concept and a practical implementation of piston-compounding. First, a detailed computer simulation of the piston-compounded engine is used to shed light into the thermodynamic events associated with the operation of this engine, and to predict the performance and fuel economy of the entire system. Starting from a baseline design, the simulation is used to investigate changes in system performance as critical parameters are varied. The latter include auxiliary cylinder and interconnecting manifold volumes for a given main cylinder volume, auxiliary cylinder valve timings in relation to main cylinder timings, and degree of heat loss to the coolant. Optimum designs for either highest power density or highest thermal efficiency (54%) are thus recommended. It is concluded that a piston-compounded adiabatic engine concept is a promising future powerplant.
Technical Paper

Development and Use of a Vehicle Powertrain Simulation for Fuel Economy and Performance Studies

1990-02-01
900619
A personal computer-based vehicle powertrain simulation (VPS) is developed to predict fuel economy and performance. This paper summarizes the governing equations used in the model. Then the different simulation techniques are described with emphasis on the more complicated time-dependent simulation. The simulation is validated against constant speed and variable cycle test track data obtained for a 5 ton army truck. Then the simulation is used to compare the performance of the 5 ton truck when powered by a cooled and natually aspirated engine, a cooled and turbocharged engine, and an uncooled and turbocharged engine. Studies of the effect of payload, tire efficiency, and drag coefficient on vehicle performance are also conducted, as well as a performance comparison between manual and automatic transmissions. It is concluded that the VPS code can provide good predictions of vehicle fuel economy, and thus is a useful tool in designing and evaluating vehicle powertrains.
Technical Paper

Integrated, Feed-Forward Hybrid Electric Vehicle Simulation in SIMULINK and its Use for Power Management Studies

2001-03-05
2001-01-1334
A hybrid electric vehicle simulation tool (HE-VESIM) has been developed at the Automotive Research Center of the University of Michigan to study the fuel economy potential of hybrid military/civilian trucks. In this paper, the fundamental architecture of the feed-forward parallel hybrid-electric vehicle system is described, together with dynamic equations and basic features of sub-system modules. Two vehicle-level power management control algorithms are assessed, a rule-based algorithm, which mainly explores engine efficiency in an intuitive manner, and a dynamic-programming optimization algorithm. Simulation results over the urban driving cycle demonstrate the potential of the selected hybrid system to significantly improve vehicle fuel economy, the improvement being greater when the dynamic-programming power management algorithm is applied.
Technical Paper

Transient Spray Cone Angles in Pressure-Swirl Injector Sprays

2004-10-25
2004-01-2939
The transient cone angle of pressure swirl sprays from injectors intended for use in gasoline direct injection engines was measured from 2D Mie scattering images. A variety of injectors with varying nominal cone angle and flow rate were investigated. The general cone angle behavior was found to correlate well qualitatively with the measured fuel line pressure and was affected by the different injector specifications. Experimentally measured modulations in cone angle and injection pressure were forced on a comprehensive spray simulation to understand the sensitivity of pulsating injector boundary conditions on general spray structure. Ignoring the nozzle fluctuations led to a computed spray shape that inadequately replicated the experimental images; hence, demonstrating the importance of quantifying the injector boundary conditions when characterizing a spray using high-fidelity simulation tools.
Technical Paper

Optimizing Gaseous Fuel-Air Mixing in Direct Injection Engines Using an RNG Based k-ε Model

1998-02-23
980135
Direct injection of natural gas under high pressure conditions has emerged as a promising option for improving engine fuel economy and emissions. However, since the gaseous injection technology is new, limited experience exists as to the optimum configuration of the injection system and associated combustion chamber design. The present study uses KIVA-3 based, multidimensional modeling to improve the understanding and assist the optimization of the gaseous injection process. Compared to standard k-ε models, a Renormalization Group Theory (RNG) based k-ε model [1] has been found to be in better agreement with experiments in predicting gaseous penetration histories for both free and confined jet configurations. Hence, this validated RNG model is adopted here to perform computations in realistic engine geometries.
Technical Paper

Multi-Dimensional Modeling of Natural Gas Ignition Under Compression Ignition Conditions Using Detailed Chemistry

1998-02-23
980136
A detailed chemical kinetic mechanism, consisting of 22 species and 104 elementary reactions, has been used in conjunction with the multi-dimensional reactive flow code KIVA-3 to study autoignition of natural gas injected under compression ignition conditions. Calculations for three different blends of natural gas are performed on a three-dimensional computational grid by modeling both the injection and ignition processes. Ignition delay predictions at pressures and temperatures typical of top-dead-center conditions in compression ignition engines compare well with the measurements of Naber et al. [1] in a combustion bomb. Two different criteria, based on pressure rise and mass of fuel burned, are used to detect the onset of ignition. Parametric studies are conducted to show the effect of additives like ethane and hydrogen peroxide in increasing the fuel consumption rate.
Technical Paper

One-Dimensional Transient Dynamics of Fuel Evaporation and Diffusion in Induction Systems

1997-02-24
970058
Engine performance under transients is greatly affected by the fuel behavior in the induction systems. To better understand the fuel behavior, a computer model has been developed to study the one-dimensional coupled heat and mass transfer processes occurring during the transient evaporation of liquid fuel from a heated surface into stagnant air. The energy and mass diffusion equations are solved simultaneously to yield the transient temperatures and species concentrations using a modified finite difference technique. The numerical technique is capable of solving the coupled equations while simultaneously tracking the movement of the evaporation interface. Evaporation results are presented for various initial film thicknesses representing typical puddle thicknesses for multi-point fuel injection systems using heptane, octane, and nonane pure hydrocarbon fuels.
Technical Paper

A High Temperature and High Pressure Evaporation Model for the KIVA-3 Code

1996-02-01
960629
A high pressure and high temperature evaporation model was implemented in the KIVA-3 multidimensional engine simulation. The most significant features of the new evaporation model are: the effects of Stefan flow on transfer rates are included; internal circulation is accounted using the effective conductivity model of Abramzon and Sirignano [1]; equilibrium composition is calculated at high pressures using a real gas equation of state; and properties are evaluated as functions of temperature, pressure and composition. The evaporation of a continuous spray of n-dodecane injected in a chamber pressurized with nitrogen gas was simulated using the two models. Predictions of the evaporation rate, the spray penetration and fuel vapor distribution by the two models were significantly different. The differences persisted over a range of ambient pressures and temperatures, injection velocities, initial droplet sizes and fuel volatilities.
Technical Paper

Simultaneous Reduction of NOX and Soot in a Heavy-Duty Diesel Engine by Instantaneous Mixing of Fuel and Water

2007-04-16
2007-01-0125
Meeting diesel engine emission standards for heavy-duty vehicles can be achieved by simultaneous injection of fuel and water. An injection system for instantaneous mixing of fuel and water in the combustion chamber has been developed by injecting water in a mixing passage located in the periphery of the fuel spray. The fuel spray is then entrained by water and hot air before it burns. The experimental work was carried out on a Rapid Compression Machine and on a Komatsu direct-injection heavy-duty diesel engine with a high pressure common rail fuel injection system. It was also supported by Computational Fluid Dynamics simulations of the injection and combustion processes in order to evaluate the effect of water vapor distribution on cylinder temperature and NOX formation. It has been concluded that when the water injection is appropriately timed, the combustion speed is slower and the cylinder temperature lower than in conventional diesel combustion.
Technical Paper

Analysis of Load and Speed Transitions in an HCCI Engine Using 1-D Cycle Simulation and Thermal Networks

2006-04-03
2006-01-1087
Exhaust gas rebreathing is considered to be a practical enabler that could be used in HCCI production engines. Recent experimental work at the University of Michigan demonstrates that the combustion characteristics of an HCCI engine using large amounts of hot residual gas by rebreathing are very sensitive to engine thermal conditions. This computational study addresses HCCI engine operation with rebreathing, with emphasis on the effects of engine thermal conditions during transient periods. A 1-D cycle simulation with thermal networks is carried out under load and speed transitions. A knock integral auto-ignition model, a modified Woschni heat transfer model for HCCI engines and empirical correlations to define burn rate and combustion efficiency are incorporated into the engine cycle simulation model. The simulation results show very different engine behavior during the thermal transient periods compared with steady state.
Technical Paper

Simulation of an Integrated Starter Alternator (ISA) System for the HMMWV

2006-04-03
2006-01-0442
The development and use of a simulation of an Integrated Starter Alternator (ISA) for a High Mobility Multi-purpose Wheeled Vehicle (HMMWV) is presented here. While the primary purpose of an ISA is to provide electric power for additional accessories, it can also be utilized for mild hybridization of the powertrain. In order to explore ISA's potential for improving HMMWV's fuel economy, an ISA model capable of both producing and absorbing mechanical power has been developed in Simulink. Based on the driver's power request and the State of Charge of the battery (SOC), the power management algorithm determines whether the ISA should contribute power to, or absorb power from the crankshaft. The system is also capable of capturing some of the braking energy and using it to charge the battery. The ISA model and the power management algorithm have been integrated in the Vehicle-Engine SIMulation (VESIM), a SIMULINK-based vehicle model previously developed at the University of Michigan.
Technical Paper

Development and Validation of a Comprehensive CFD Model of Diesel Spray Atomization Accounting for High Weber Numbers

2006-04-03
2006-01-1546
Modern diesel engines operate under injection pressures varying from 30 to 200 MPa and employ combinations of very early and conventional injection timings to achieve partially homogeneous mixtures. The variety of injection and cylinder pressures results in droplet atomization under a wide range of Weber numbers. The high injection velocities lead to fast jet disintegration and secondary droplet atomization under shear and catastrophic breakup mechanisms. The primary atomization of the liquid jet is modeled considering the effects of both infinitesimal wave growth on the jet surface and jet turbulence. Modeling of the secondary atomization is based on a combination of a drop fragmentation analysis and a boundary layer stripping mechanism of the resulting fragments for high Weber numbers. The drop fragmentation process is predicted from instability considerations on the surface of the liquid drop.
Technical Paper

The Effects of Spray, Mixing, and Combustion Model Parameters on KIVA-II Predictions

1991-09-01
911785
The combustion process in a diesel engine was simulated using KIVA-II, a multi-dimensional computer code. The original combustion model in KIVA-II is based on chemical kinetics, and thus fails to capture the effects of turbulence on combustion. A mixing-controlled, eddy break-up combustion model was implemented into the code. Realistic diesel fuel data were also compiled. Subsequently, the sensitivity of the code to a number of parameters related to fuel injection, mixing, and combustion was studied. Spray injection parameters were found to have a strong influence on the model's predictions. Higher injection velocity and shorter injection duration result in a higher combustion rate and peak pressure and temperature. The droplet size specified at injection significantly affects the rate of spray penetration and evaporation, and thus the combustion rate. Contrary to expectation, the level of turbulence at the beginning of the calculation did not affect fuel burning rate.
X