Refine Your Search

Search Results

Standard

Designing with Elastomers for Use at Low Temperatures, Near or Below Glass Transition

2003-12-30
HISTORICAL
AIR1387C
To ensure success in design of elastomeric parts for use at low temperature, the design engineer must understand the peculiar properties of rubber materials at these temperatures. There are no static applications of rubber. The Gaussian theory of rubber elasticity demonstrates that the elastic characteristic of rubber is due to approximately 15% internal energy and the balance, 85%, is entropy change. In other words, when an elastomer is deformed, the elastomer chain network is forced to rearrange its configuration thereby storing energy through entropy change. Thermodynamically, this means that rubber elasticity is time and temperature dependent (Reference 25). The purpose of this report is to provide guidance on low temperature properties of rubber with the terminology, test methods, and mathematical models applicable to rubber, and to present some practical experience.
Standard

Designing with Elastomers for use at Low Temperatures, Near or Below Glass Transition

2016-01-15
CURRENT
AIR1387D
To ensure success in design of elastomeric parts for use at low temperature, the design engineer must understand the peculiar properties of rubber materials at these temperatures. There are no static applications of rubber. The Gaussian theory of rubber elasticity demonstrates that the elastic characteristic of rubber is due to approximately 15% internal energy and the balance, 85%, is entropy change. In other words, when an elastomer is deformed, the elastomer chain network is forced to rearrange its configuration thereby storing energy through entropy change. Thermodynamically, this means that rubber elasticity is time and temperature dependent (Reference 25). The purpose of this report is to provide guidance on low temperature properties of rubber with the terminology, test methods, and mathematical models applicable to rubber, and to present some practical experience.
Standard

AGE CONTROL OF AGE SENSITIVE ELASTOMERIC MATERIALS

1975-05-01
HISTORICAL
AIR1364
This report summarizes data and background relative to age control of specific classes of those nitrile type synthetic elastomers used in sealing devices which are resistant to petroleum base hydraulic fluids, lubricating oils and aircraft fuels. This includes, but is not limited to, those nitrile (NBR or BUNA-N) elastomers specifically covered by Section I of MIL-STD-1523.
Standard

Age Control of Age Sensitive Elastomeric Materials

1995-11-01
HISTORICAL
AIR1364A
This SAE Aerospace Information Report (AIR) summarizes data and background relative to age control of specific classes of those nitrile type synthetic elastomers used in sealing devices which are resistant to petroleum base hydraulic fluids, lubricating oils, and aircraft fuels. This includes, but is not limited to, those nitrile (NBR or BUNA-N) elastomers previously covered by Section I of MIL-STD-1523.
Standard

Age Control of Age Sensitive Elastomeric Materials

2018-04-11
CURRENT
AIR1364B
This SAE Aerospace Information Report (AIR) summarizes data and background relative to age control of specific classes of those nitrile type synthetic elastomers used in sealing devices which are resistant to petroleum base hydraulic fluids, lubricating oils, and aircraft fuels. This includes, but is not limited to, those nitrile (NBR or BUNA-N) elastomers previously covered by Section I of MIL-STD-1523.
Standard

Elastomer: Fluorosilicone Rubber (FVMQ) Fuel and Oil Resistant 65 – 75 Shore A Hardness For Products in Fuel Systems/Lubricating Oils

2017-11-20
CURRENT
AMS3331C
This specification covers a fluorosilicone (FVMQ) elastomer that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes. This specification should not be used for molded rings, compression seals, O-ring cord, and molded in place gaskets for aeronautical and aerospace applications without complete consideration of the end use prior to the selection of this material.
Standard

Aviation Fuel, Grade 91/98

1946-11-01
HISTORICAL
AMS3028
This specification has been declared "CANCELLED" by the Aerospace Materials Division, SAE as of March 1990.
X