Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Premixed Low Temperature Combustion of Biodiesel and Blends in a High Speed Compression Ignition Engine

2009-04-20
2009-01-0133
The effects of combining premixed, low temperature combustion (LTC) with biodiesel are relatively unknown to this point. This mode allows simultaneously low soot and NOx emissions by using high rates of EGR and increasing ignition delay. This paper compares engine performance and emissions of neat, soy-based methyl ester biodiesel (B100), B20, B50, pure ultra low sulfur diesel (ULSD) and a Swedish, low aromatic diesel in a multi-cylinder diesel engine operating in a late-injection premixed LTC mode. Using heat release analysis, the progression of LTC combustion was explored by comparing fuel mass fraction burned. B100 had a comparatively long ignition delay compared with Swedish diesel when measured by start of ignition (SOI) to 10% fuel mass fraction burned (CA10). Differences were not as apparent when measured by SOI to start of combustion (SOC) even though their cetane numbers are comparable.
Technical Paper

Load Limits with Fuel Effects of a Premixed Diesel Combustion Mode

2009-06-15
2009-01-1972
Premixed diesel combustion is intended to supplant conventional combustion in the light to mid load range. This paper demonstrates the operating load limits, limiting criteria, and load-based emissions behavior of a direct-injection, diesel-fueled, premixed combustion mode across a range of test fuels. Testing was conducted on a modern single-cylinder engine fueled with a range of ultra-low sulfur fuels with cetane number ranging from 42 to 53. Operating limits were defined on the basis of emissions, noise, and combustion stability. The emissions behavior and operating limits of the tested premixed combustion mode are independent of fuel cetane number. Combustion stability, along with CO and HC emissions levels, dictate the light load limit. The high load limit is solely dictated by equivalence ratio: high PM, CO, and HC emissions result as overall equivalence ratio approaches stoichiometric.
Technical Paper

Experimental Investigation of the Effects of Fuel Characteristics on High Efficiency Clean Combustion in a Light-Duty Diesel Engine

2009-11-02
2009-01-2669
An experimental study was performed to understand fuel property effects on low temperature combustion (LTC) processes in a light-duty diesel engine. These types of combustion modes are often collectively referred to as high efficiency clean combustion (HECC). A statistically designed set of research fuels, the Fuels for Advanced Combustion Engines (FACE), were used for this study. Engine conditions of 1500rpm, 2.6bar BMEP was chosen for investigating fuel property effects on HECC operation in a GM 1.9-L common rail diesel engine. The FACE fuel matrix includes nine combinations of fuel properties including cetane number (30 to 55), aromatic content (20 to 45%), and 90% distillation temperature (270 to 340°C). HECC operation was achieved with high levels of exhaust gas recirculation (EGR) and adjusting injection parameters, such as higher fuel rail pressure and single injection event, which is also known as premixed charge compression ignition (PCCI) combustion.
Technical Paper

A Study on the Effects of Cetane Number on the Energy Balance between Differently Sized Engines

2017-03-28
2017-01-0805
This paper investigates the effect of the cetane number (CN) of a diesel fuel on the energy balance between a light duty (1.9L) and medium duty (4.5L) diesel engine. The two engines have a similar stroke to bore (S/B) ratio, and all other control parameters including: geometric compression ratio, cylinder number, stroke, and combustion chamber, have been kept the same, meaning that only the displacement changes between the engine platforms. Two Coordinating Research Council (CRC) diesel fuels for advanced combustion engines (FACE) were studied. The two fuels were selected to have a similar distillation profile and aromatic content, but varying CN. The effects on the energy balance of the engines were considered at two operating conditions; a “low load” condition of 1500 rev/min (RPM) and nominally 1.88 bar brake mean effective pressure (BMEP), and a “medium load” condition of 1500 RPM and 5.65 BMEP.
Technical Paper

Fuel Economy and Power Benefits of Cetane-Improved Fuels in Heavy-Duty Diesel Engines

1997-10-01
972900
A program to explore the effects of natural and additive-derived cetane on various aspects of diesel performance and combustion has been carried out. Procedures have been developed to measure diesel engine fuel consumption and power to a high degree of precision. These methods have been used to measure fuel consumption and power in three heavy-duty direct-injection diesel engines. The fuel matrix consisted of three commercial fuels of cetane number (CN) of 40-42, the same fuels raised to CN 48-50 with a cetane improver additive, and three commercial fuels of base CN 47-50. The engines came from three different U.S. manufacturers and were of three different model years and emissions configurations. Both fuel economy and power were found to be significantly higher for the cetane-improved fuels than for the naturally high cetane fuels. These performance advantages derive mainly from the higher volumetric heat content inherent to the cetane-improved fuels.
X