Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Multi-body Dynamics Based Gear Mesh Models for Prediction of Gear Dynamics and Transmission Error

2010-04-12
2010-01-0897
Gear trains applied to automotive transmissions and combustion engines are potential excitation sources of undesired whine noise. Consequently, the prediction of gear whine issues in an early stage of the product development process is strongly requested. Beside the actual excitation mechanism which is closely related to the gear's transmission error, the vibratory behavior (e.g. resonances) of other affected components like shafts, bearings and housing plays an important role in terms of structure borne noise transfer. The paper deals with gear contact models of different degree of detail, which are embedded in a multi-body dynamics (MBD) environment. Since gear meshing frequency and their harmonics may easily reach up to 5 kHz or even 10 kHz, applied gear contact models must be highly efficient with respect to calculation performance. Otherwise, major requirements of the development process in terms of process time can not be satisfied as is the case with FEA-based contact models.
Technical Paper

Gear Whine Noise Investigation of a Bus Rear Axle - Todays Possibilities and Outlook

2017-06-05
2017-01-1820
This paper presents a simulation environment and methodology for noise and vibration analyses of a driven rear axle in a bus application, with particular focus on medium to high frequency range (400 Hz to 3 kHz). The workflow demonstrates structure borne noise and sound radiation analyses. The fully flexible Multi-Body Dynamics (MBD) model - serving to cover the actual mechanical excitation mechanisms and the structural domain - includes geometrical contacts of hypoid gear in the central gear and planetary gear integrated at hubs, considering non-linear meshing stiffness. Contribution of aforementioned gear stages, as well as the propeller shaft universal joint at the pinion axle, on overall axle noise levels is investigated by means of sensitivity analysis. Based on the surface velocities computed at the vibrating axle-housing structure the Wave Based Technique (WBT) is employed to solve the airborne noise problem and predict the radiated sound.
X