Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Root Cause Analysis and Structural Optimization of E-Drive Transmission

2020-09-30
2020-01-1578
We face a growing demand for so-called eAxles (electric axle drive) in vehicle development. An eAxle is a compact electric drive solution for full electric vehicles (and P4 hybrids) with integrated electric machine and transmission. The transmission can be rather simple using fixed gear with cylindrical gear steps but increasing demands on power and speed range as well as efficiency increase its complexity with planetary stages or switchable gear steps. Such an electro-mechanic system has different behavior than the classical ICE-driven powertrains, for example regarding NVH, where high frequency and tonal noise from gear whining and electro-magnetic excitation is an important comfort issue that needs to be understood and controlled.
Technical Paper

Crank-Angle Resolved Modeling of Fuel Injection and Mixing Controlled Combustion for Real-Time Application In Steady-State and Transient Operation

2014-04-01
2014-01-1095
The present works presents a real-time capable engine model with physical based description of the fuel injection and the combustion process. The model uses a crank-angle resolved cylinder model and a filling and emptying approach for cylinder and gas-path interaction. A common rail injection system model is developed and implemented into the real-time engine framework. The injection model calculates injection quantity and injection rate profile from the input of the ECU signals target injection pressure and injection timing. The model accounts for pressure oscillations in the injection system. A phenomenological combustion model for Diesel engines is implemented, which is based on the mixing controlled combustion modeling approach. The combustion model calculates the rate of heat release from the injection rate given by the injection model. The injection and combustion model are validated in detail against steady-state measurement data for two different passenger car sized engines.
Journal Article

Power Train Model Refinement Linked with Parameter Updating Through Nonlinear Optimization

2010-06-09
2010-01-1421
In the virtual development process validated simulation models are requested to accurately predict power train vibration and comfort phenomena. Conclusions from refined parameter studies enable to avoid costly tests on rigs and on the road. Thereby, an appropriate modeling approach for specific phenomena has to be chosen to ensure high quality results. But then, parameters for characterizing the dynamic properties of components are often insufficient and have to be roughly estimated in this development stage. This results in a imprecise prediction of power train resonances and in a less conclusive understanding of the considered phenomena. Conclusions for improvements remain uncertain. This paper deals with the two different aspects of model refinement and parameter updating. First an existing power train model (predecessor power train) is analyzed whether the underlying modeling approach can reproduce the physical behavior of the power train dynamics adequately.
Technical Paper

Multi-body Dynamics Based Gear Mesh Models for Prediction of Gear Dynamics and Transmission Error

2010-04-12
2010-01-0897
Gear trains applied to automotive transmissions and combustion engines are potential excitation sources of undesired whine noise. Consequently, the prediction of gear whine issues in an early stage of the product development process is strongly requested. Beside the actual excitation mechanism which is closely related to the gear's transmission error, the vibratory behavior (e.g. resonances) of other affected components like shafts, bearings and housing plays an important role in terms of structure borne noise transfer. The paper deals with gear contact models of different degree of detail, which are embedded in a multi-body dynamics (MBD) environment. Since gear meshing frequency and their harmonics may easily reach up to 5 kHz or even 10 kHz, applied gear contact models must be highly efficient with respect to calculation performance. Otherwise, major requirements of the development process in terms of process time can not be satisfied as is the case with FEA-based contact models.
Journal Article

Improved Comfort Analysis and Drivability Assessment by the Use of an Extended Power Train Model for Automatic Transmissions

2012-06-13
2012-01-1529
The new generation of automatic transmissions is characterized by a compact and highly efficient design. By the use of a higher overall gear ratio and lightweight components combined with optimal gear set concepts it is possible to improve significantly fuel consumption and driving dynamics. Precise and efficient real time models of the whole power train including models for complex subsystems like the automatic transmission are needed to combine real hardware with virtual models on XiL test rigs. Thereby it's possible to achieve a more efficient product development process optimized towards low development costs by less needed prototypes and shorter development times by pushing front loading in the process. In this paper a new real time model for automatic transmissions including approved models for the torque converter, the lock-up clutch and the torsional damper are introduced. At the current development stage the model can be used for comfort analysis and drivability assessment.
Technical Paper

Optimization of Hybrid Power Trains-Physical Based Modeling for Concept Design

2012-04-16
2012-01-0359
This paper presents a comparison of a hybrid and a conventional powertrain using physical based simulation models on the system engineering level. The system engineering model comprises mechanistic sub-models of the internal combustion engine including exhaust aftertreatment devices, electric components, mechanical drivetrain, thermoregulation system and the corresponding controllers. Essential sub-models are discussed in detail and their interaction on the system level is pointed out. Special attention is paid to compile a real-time capable model by combining mean value air path and drivetrain models with a crank-angle resolved cylinder description and quasi-steady state considerations applied in electrical and cooling networks. A turbocharged gasoline direct injection engine is modeled and calibrated based on steady-state measurements. The conversion performance of a three way catalyst is compared to light-off measurements.
Technical Paper

Model Based Assessment of Real-Driving Emissions - A Variation Study on Design and Operation Parameter

2019-01-09
2019-26-0241
In 2017 the European authorities put into effect the first part of a new certification test procedure for Real Driving Emissions (RDE). Similar tests are planned in other regions of the world, such as the upcoming China 6a/6b standards, further tightening emission limits, and also the introduction of RDE tests. Both restrictions pose challenging engineering tasks for upcoming vehicles. RDE certification tests feature significantly more demanding engine operating conditions and thus, emit more pollutants by orders of magnitude compared to known cycles like NEDC. Here, especially the reduction of NOx is a specific technical challenge, as it needs to compromise also with reduction targets on carbon dioxide. The fulfilment of both emission limits requires a widening of the focus from an isolated engine or exhaust aftertreatment view to a system engineering view involving all hardware and software domains of the vehicle.
X