Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Journal Article

Definition of Gearshift Pattern: Innovative Optimization Procedures Using System Simulation

2011-04-12
2011-01-0395
Today's powertrains are becoming more and more complex due to the increasing number of gear box types requiring gearshift patterns like conventional (equipped with GSI) and automatic-manual transmissions (AT, AMT), double clutch and continuous variable transmissions (DCT, CVT). This increasing variety of gear boxes requires a higher effort for the overall optimization of the powertrain. At the same time, it is necessary to assess the impact of different powertrains and control strategies on CO₂ emissions very early in the development process. The optimization of Gear Shift Patterns (G.S.P.) has to fulfill multiple constraints in terms of objective customers' requirements, like driveability, NVH, performance, emissions and fuel consumption. For these reasons, RENAULT and AVL entered an engineering collaboration in order to develop a dedicated simulation tool: CRUISE GSP.
Journal Article

A Miniature Catalytic Stripper for Particles Less Than 23 Nanometers

2013-04-08
2013-01-1570
The European Emissions Stage 5b standard for diesel passenger cars regulates particulate matter to 0.0045 g/km and non-volatile part/km greater than 23 nm size to 6.0x10₁₁ as determined by the PMP procedure that uses a heated evaporation tube to remove semi-volatile material. Measurement artifacts associated with the evaporation tube technique prevents reliable extension of the method to a lower size range. Catalytic stripper (CS) technology removes possible sources of these artifacts by effectively removing all hydrocarbons and sulfuric acid in the gas phase in order to avoid any chemical reactions or re-nucleation that may cause measurement complications. The performance of a miniature CS was evaluated and experimental results showed solid particle penetration was 50% at 10.5 nm. The sulfate storage capacity integrated into the CS enabled it to chemically remove sulfuric acid vapor rather than rely on dilution to prevent nucleation.
Technical Paper

Crank-Angle Resolved Real-Time Capable Engine and Vehicle Simulation - Fuel Consumption and Driving Performance

2010-04-12
2010-01-0784
The present work introduces a fully integrated real-time (RT) capable engine and vehicle model. The gas path and drive line are described in the time domain of seconds whereas the reciprocating characteristics of an IC engine are reflected by a crank angle resolved cylinder model. The RT engine model is derived from a high fidelity 1D cycle simulation and gas exchange model to support an efficient and consistent transfer of model data like geometries, heat transfer or combustion. The workflow of model calibration and application is outlined and base ECU functionalities for boost pressure, EGR, smoke and idle speed control are applied for transient engine operation. Steady state results of the RT engine model are compared to experimental data and 1D high fidelity simulations for 19 different engine load points. In addition an NEDC (New European Drive Cycle) is simulated and results are evaluated with data from chassis dynamometer measurements.
Technical Paper

Automated EMS Calibration using Objective Driveability Assessment and Computer Aided Optimization Methods

2002-03-04
2002-01-0849
Future demands regarding emissions, fuel consumption and driveability lead to complex engine and power train control systems. The calibration of the increasing number of free parameters in the ECU's contradicts the demand for reduced time in the power train development cycle. This paper will focus on the automatic, unmanned closed loop optimization of driveability quality on a high dynamic engine test bed. The collaboration of three advanced methods will be presented: Objective real time driveability assessment, to predict the expected feelings of the buyers of the car Automatic computer assisted variation of ECU parameters on the basis of statistical methods like design of experiments (DoE). Thus data are measured in an automated process allowing an optimization based on models (e.g. neural networks).
Technical Paper

Modeling of Reactive Spray Processes in DI Diesel Engines

2017-03-28
2017-01-0547
Commonly, the spray process in Direct Injection (DI) diesel engines is modeled with the Euler Lagrangian discrete droplet approach which has limited validity in the dense spray region, close to the injector nozzle hole exit. In the presented research, a new reactive spray modelling method has been developed and used within the 3D RANS CFD framework. The spray process was modelled with the Euler Eulerian multiphase approach, extended to the size-of-classes approach which ensures reliable interphase momentum transfer description. In this approach, both the gas and the discrete phase are considered as continuum, and divided into classes according to the ascending droplet diameter. The combustion process was modelled by taking into account chemical kinetics and by solving general gas phase reaction equations.
Technical Paper

Crank-Angle Resolved Modeling of Fuel Injection, Combustion and Emission Formation for Engine Optimization and Calibration on Real-Time Systems

2016-04-05
2016-01-0558
The present work introduces an innovative mechanistically based 0D spray model which is coupled to a combustion model on the basis of an advanced mixture controlled combustion approach. The model calculates the rate of heat release based on the injection rate profile and the in-cylinder state. The air/fuel distribution in the spray is predicted based on momentum conservation by applying first principles. On the basis of the 2-zone cylinder framework, NOx emissions are calculated by the Zeldovich mechanism. The combustion and emission models are calibrated and validated with a series of dedicated test bed data specifically revealing its capability of describing the impact of variations of EGR, injection timing, and injection pressure. A model based optimization is carried out, aiming at an optimum trade-off between fuel consumption and engine-out emissions. The findings serve to estimate an economic optimum point in the NOx/BSFC trade-off.
Technical Paper

Influence of Different Oil Properties on Low-Speed Pre-Ignition in Turbocharged Direct Injection Spark Ignition Engines

2016-04-05
2016-01-0718
In recent years concern has arisen over a new combustion anomaly, which was not commonly associated with naturally aspirated engines. This phenomenon referred to as Low-Speed Pre-Ignition (LSPI), which often leads to potentially damaging peak cylinder pressures, is the most important factor limiting further downsizing and the potential CO2 benefits that it could bring. Previous studies have identified several potential triggers for pre-ignition where engine oil seems to have an important influence. Many studies [1], [2] have reported that detached oil droplets from the piston crevice volume lead to auto-ignition prior to spark ignition. Furthermore, wall wetting and subsequently oil dilution [3] and changes in the oil properties by impinging fuel on the cylinder wall seem to have a significant influence in terms of accumulation and detachment of oil-fuel droplets in the combustion chamber.
Technical Paper

A Computational Study on the Impact of Cycle-to-Cycle Combustion Fluctuations on Fuel Consumption and Knock in Steady-State and Drivecycle Operation

2013-09-08
2013-24-0030
In spark-ignition engines, fluctuations of the in-cylinder pressure trace and the apparent rate of heat release are usually observed from one cycle to another. These Cycle-to-Cycle Variations (CCV) are affected by the early flame development and the subsequent flame front propagation. The CCV are responsible for engine performance (e.g. fuel consumption) and the knock behavior. The occurrence of the phenomena is unpredictable and the stochastic nature offers challenges in the optimization of engine control strategies. In the present work, CCV are analyzed in terms of their impact on the engine knock behavior and the related efficiency. Target is to estimate the possible fuel consumption savings in steady-state operation and in the drivecycle, when CCV are reduced. Since CCV are immanent on real engines, such a study can only be done by means of simulation.
Technical Paper

New Fuel Mass Flow Meter - A Modern and Reliable Approach to Continuous and Accurate Fuel Consumption Measurement

2000-03-06
2000-01-1330
Over the past few years, the fuel mass measurement gained in importance to record the consumed fuel mass and the specific fuel consumption [g/kWh] with high accuracy. Measuring instruments, such as positive displacement meters, methods based on the burette or the Wheatstone bridge mass flow meter measure either the volumetric flow and a temperature-dependant fuel density correction is necessary or they have old technology and therefore poor accuracy and repeatability. A new-generation Coriolis sensor featuring an ideal measurement range for engine test beds but still with flow depending pressure drop has been integrated in a fuel meter to ensure that no influence is given to the engine behaviour for example after engine load change. The new Coriolis meter offers better accuracy and repeatability, gas bubble venting and easy test bed integration. For returnless fuel injection systems the fuel system supplies the fuel pressure.
Technical Paper

Effects of Pulsating Flow on Exhaust Port Flow Coefficients

1999-03-01
1999-01-0214
Five very different exhaust ports of diesel and gasoline engines are investigated under steady and unsteady flow to determine whether their flow coefficients are sensitive to unsteady flow. Valve lift is fixed for a specific test but varied from test to test to determine whether the relationship between steady and unsteady flow is lift dependent. The pulse frequency is chosen to correspond to the blow-down phase of an engine running at approximately 6000 rpm, but the pressure drop across the port is much smaller than that present in a running engine. Air at room temperature is used as the working fluid. It is shown that unsteady flow through the five exhaust ports causes, at most, a 6% increase or a 7% decrease in flow coefficient.
Technical Paper

A Simulation Approach for Vehicle Life-Time Thermal Analysis Applied to a HEV Battery System

2016-04-05
2016-01-0201
In order to meet current and future emission and CO2 targets, an efficient vehicle thermal management system is one of the key factors in conventional as well as in electrified powertrains. Global vehicle simulation is already a well-established tool to support the vehicle development process. In contrast to conventional vehicles, electrified powertrains offer an additional challenge to the thermal conditioning: the durability of E-components is not only influenced by temperature peaks but also by the duration and amplitude of temperature swings as well as temperature gradients within the components during their lifetime. Keeping all components always at the preferred lowest temperature level to avoid ageing under any conditions (driving, parking, etc.) will result in very high energy consumption which is in contradiction to the efficiency targets.
Technical Paper

A Scalable Simulation Method for the Assessment of Cycle-to-Cycle Combustion Variations and their impact on Fuel Consumption and Knock

2015-01-14
2015-26-0213
In the present work, a scalable simulation methodology is presented that enables the assessment of the impact of SI-engine cycle-to-cycle combustion variations on fuel consumption and hence CO2 emissions on three different levels of modeling depth: in-cylinder, steady-state engine and transient engine and vehicle simulation. On the detailed engine combustion chamber level, a 3D-CFD approach is used to study the impact of the turbulent in-cylinder flow on the cycle-resolved flame propagation characteristics. On engine level, cycle-to-cycle combustion variations are assessed regarding their impact on indicated mean effective pressure, aiming at estimating the possible fuel consumption savings when cyclic variations are minimized. Finally, on the vehicle system level, a combined real-time engine approach with crank-angle resolved cylinder is used to assess the potential fuel consumption savings for different vehicle drivecycle conditions.
Technical Paper

Modelling the Knocking Combustion of a Large Gas Engine Considering Cyclic Variations and Detailed Reaction Kinetics

2014-10-13
2014-01-2690
The combustion efficiency of large gas engines is limited by knocking combustion. Due to fact that the quality of the fuel gas has a high impact on the self-ignition of the mixture, it is the aim of this work to model the knocking combustion for fuel gases with different composition using detailed chemistry. A cycle-resolved knock simulation of the fast burning cycles was carried out in order to assume realistic temperatures and pressures in the unburned mixture Therefore, an empirical model that predicts the cyclic variations on the basis of turbulent and chemical time scales was derived from measured burn rates and implemented in a 1D simulation model. Based on the simulation of the fast burning engine cycles the self-ignition process of the unburned zone was calculated with a stochastic reactor model and correlated to measurements from the engines test bench. A good agreement of the knock onset could be achieved with this approach.
Technical Paper

Vehicle Thermal Management Simulation Method Integrated in the Development Process from Scratch to Prototype

2014-04-01
2014-01-0668
In order to meet current and future emission and CO2 targets, an efficient vehicle thermal management system is one of the key factors in conventional as well as in electrified powertrains. Furthermore the increasing number of vehicle configurations leads to a high variability and degrees of freedom in possible system designs and the control thereof, which can only be handled by a comprehensive tool chain of vehicle system simulation and a generic control system architecture. The required model must comprise all relevant systems of the vehicle (control functionality, cooling system, lubrication system, engine, drive train, HV components etc.). For proper prediction with respect to energy consumption all interactions and interdependencies of those systems have to be taken into consideration, i.e. all energy fluxes (mechanical, hydraulically, electrical, thermal) have to be exchanged among the system boundaries accordingly.
Technical Paper

Battery Thermal Management Simulation - 1D+1D Electrochemical Battery and 3D Module Modeling on Vehicle System Level

2021-04-06
2021-01-0757
Approaching engineering limits for the thermal design of battery modules requires virtual prototyping and appropriate models with respect to physical depth and computational effort. A multi-scale and multi-domain model describes the electrochemical behavior of a single battery unit cell in 1D+1D at the level of intra-cell phenomena, and it applies a 3D thermal model at module level. Both models are connected within a common vehicle simulation platform. The models are discussed with special emphasis on battery degradation such as solid electrolyte interphase layer formation, decomposition and lithium plating. The performance of the electrochemical model is assessed by discharge cycles and repeated charge/discharge simulations. The thermal module model is compared to CFD reference data and studied with respect to its grid sensitivity.
Technical Paper

Increased 2-Wheeler Development Efficiency by Using a New Dedicated Test System Solution

2019-01-09
2019-26-0348
Fuel consumption is the most important contributor to the total cost of ownership for mass produced motorcycles. Therefore, best fuel economy is one main influencing criteria for a decision to purchase motorcycles. Furthermore, increasingly stringent emission legislations limit and additional OBD requirements must be fulfilled. A new combined test approach has been developed that minimizes accuracy losses in the development process which compensates for the variability of driving behavior in the chassis dyno environment. An engine testbed combined with a belt drive transmission enables operation in single engine or in Powerpack (i.e. internal combustion engine including transmission) configuration as well as under steady state or dynamic operating mode. Since the belt drive transmission is integrated in the test rig, realistic inertia situation for the single engine operating test configuration is ensured.
Technical Paper

The Hybrid IC Engine – Challenges of Hydrogen and E-Fuel Compatibility within Current Production Boundaries

2023-04-11
2023-01-0397
Increasingly stringent greenhouse gas and emission limits demand for powertrain electrification throughout all vehicle applications. Beside fully electric powertrains different configurations of hybrid powertrains will have an important role in upcoming and future vehicle generations. As already discussed in previous papers, the requirements on the combustion engine in hybrid powertrains are different to those in a conventional powertrain solution, heading for brake thermal efficiency targets of 45% and above within the product lifecycle for conventional fuels. Focus on product cost and production and assembly facility investment drives reuse of technology packages within modular powertrain technology platforms, with different combinations of internal combustion engines (ICE), transmissions, and e-drive-layouts. The goal of zero carbon operation requires compatibility of ICE for sustainable fuels.
Technical Paper

Modeling of the System Level Electric Drive using Efficiency Maps Obtained by Simulation Methods

2014-04-01
2014-01-1875
This work presents a physical model that calculates the efficiency maps of the inverter-fed Permanent Magnet Synchronous Machine (PMSM) drive. The corresponding electrical machine and its controller are implemented based on the two-phase (d-q) equivalent circuits that take into account the copper loss as well as the iron loss of the PMSM. A control strategy that optimizes the machine efficiency is applied in the controller to maximize the possible output torque. In addition, the model applies an analytical method to predict the losses of the voltage source inverter. Consequently, the efficiency maps within the entire operating region of the PMSM drive can be derived from the simulation results, and they are used to represent electric drives in the system simulation model of electric vehicles (EVs).
X