Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Composing Tradeoff Studies under Uncertainty based on Parameterized Efficient Sets and Stochastic Dominance Principles

2012-04-16
2012-01-0913
Tradeoff studies are a common part of engineering practice. Designers conduct tradeoff studies in order to improve their understanding of how various design considerations relate to one another and to make decisions. Generally a tradeoff study involves a systematic multi-criteria evaluation of various alternatives for a particular system or subsystem. After evaluating these alternatives, designers eliminate those that perform poorly under the given criteria and explore more carefully those that remain. One limitation of current practice is that designers cannot combine the results of preexisting tradeoff studies under uncertainty. For deterministic problems, designers can use the Pareto dominance criterion to eliminate inferior designs. Prior work also exists on composing tradeoff studies performed under certainty using an extension of this criterion, called parameterized Pareto dominance.
Technical Paper

A Highly Stable Two-Phase Thermal Management System for Aircraft

2012-10-22
2012-01-2186
Future electronics and photonics systems, weapons systems, and environmental control systems in aircraft will require advanced thermal management technology to control the temperature of critical components. Two-phase Thermal Management Systems (TMS) are attractive because they are compact, lightweight, and efficient. However, maintaining stable and reliable cooling in a two-phase flow system presents unique design challenges, particularly for systems with parallel evaporators during thermal transients. Furthermore, preventing ingress of liquid into a vapor compressor during variable-gravity operation is critical for long-term reliability and life. To enable stable and reliable cooling, a highly stable two-phase system is being developed that can effectively suppress flow instability in a system with parallel evaporators. Flow stability is achieved by ensuring that only single-phase liquid enters the evaporators.
Technical Paper

An Experimental Study of a General Aviation Single-Engine Aircraft Utilizing a Natural Laminar Flow Wing

1985-04-01
850861
Force and moment measurements, and surface flow patterns have been obtained for a one-fifth scale model of a single-engine general aviation aircraft utilizing a 15% thick natural laminar flow wing section. The data is for typical pre- and post-stall angles of attack, aircraft yaw attitudes, surface roughness and Reynolds number conditions. Results from a separate study of the wing alone are also given for comparison. This comparison shows that the fuselage/tail assembly acts as a lifting body. The aerodynamic characteristics show marked deterioration with increasing surface roughness. In addition, the studies indicate that the transition on the wing is characterized by laminar short bubble separation. The aerodynamic characteristics are somewhat unaffected by the presence of mini-tufts. The flow visualization photographs clearly show the transition and separation regions, and document the effects of variations in angle of attack and yaw on wing body interference.
Technical Paper

On the Concept of Negative Impedance Instability in the More Electric Aircraft Power Systems with Constant Power Loads

1999-08-02
1999-01-2545
The purpose of this paper is to present an assessment of the negative impedance instability concept of the constant power loads in the More Electric Aircraft (MEA) power systems. We address the fundamental problems faced in the stability studies of these multi-converter power electronic systems. An approach to the design of sliding-mode controllers for PWM DC/DC converters with constant power loads is presented. Because of the negative impedance destabilizing characteristics of constant power loads, conventional linear control methods have stability limitations around the operating points. However, the proposed controllers improve large-signal stability and dynamic responses. The proposed controllers are simulated and their responses under different operations are discussed. Finally, we verify the stability of the controllers using the second theorem of Lyapunov.
Technical Paper

Electrical System Architectures for Future Aircraft

1999-08-02
1999-01-2645
This paper addresses the fundamental issues faced in the aircraft electrical system architectures. Furthermore, a brief description of the conventional and advanced aircraft power system architectures, their disadvantages, opportunities for improvement, future electric loads, role of power electronics, and present trends in aircraft power system research will be given. Finally, this paper concludes with a brief outline of the projected advancements in the future.
X