Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Systematic Development of Hybrid Systems for Commercial Vehicles

2011-10-06
2011-28-0064
The reduction of CO₂ emissions represents a major goal of governments worldwide. In developed countries, approximately 20% of the CO₂ emissions originate from transport, one third of this from commercial vehicles. CO₂ emission legislation is in place for passenger cars in a number of major markets. For commercial vehicles such legislation was also already partly published or is under discussion. Furthermore the commercial vehicles market is very cost sensitive. Thus the major share of fuel cost in the total cost of ownership of commercial vehicles was already in the past a major driver for the development of efficient drivetrain solutions. These aspects make the use of new powertrain technologies, specifically hybridization, mandatory for future commercial powertrains. While some technologies offer a greater potential for CO₂ reduction than others, they might not represent the overall optimum with regard to the total cost of ownership.
Technical Paper

Consistent Development Methodology for hybrid AWD powertrains

2008-01-09
2008-28-0003
Highest grow or highest attention in vehicles power-train is related to AWD and hybrid concepts. Some of the targets for these technologies are conflicting, others are very similar, and sometimes it depends on the application. In a first look it is very questionable weather these technologies should be combined. But it can be shown, that the combination makes quite some sense. It is possible to get the superior performance and enhance safety combined with reasonable fuel economy by hybridizing an AWD powertrain. From simulation to testing, efficient processes and a consistent development platform is key to fulfill all the development tasks in the environment of this increased complexity. Simulation and benchmark activities are valuable in the early project phases to define the targets and create the specifications. In the virtual world the system selection is a major task. To get appropriate results software modules are incorporated in the simulation environment.
Technical Paper

Modeling of Engine Warm-Up with Integration of Vehicle and Engine Cycle Simulation

2001-05-14
2001-01-1697
The incorporation of a detailed engine process calculation that takes into account thermal behavior of the engine and exhaust system is essential for a realistic simulation of transient vehicle operation. This is the only possible way to have a precise preliminary calculation of fuel consumption and emissions. Therefore, a comprehensive thermal network of the engine based on the lumped capacity method has been developed. The model allows the computation of component temperatures in steady state operation as well as in transient engine studies, e.g. investigations of engine warm-up. The model is integrated in a co-simulation environment consisting of a detailed vehicle and engine cycle simulation code. The paper describes the procedure of the co-simulation and presents several examples of warm-up simulations.
Technical Paper

Heat Transfer to the Combustion Chamber and Port Walls of IC Engines - Measurement and Prediction

2000-03-06
2000-01-0568
This paper summarizes the results of several investigations on in-cylinder heat transfer during high-pressure and gas exchange phases as well as heat transfer in the inlet and outlet ports for a number of different engine types (DI Diesel, SI and gaseous fueled engine). The paper contains a comparision of simulation results and experimental data derived from heat flux measurements. Numerical results were obtained from zero-, one- and three-dimensional simulation methods. Time and spatially resolved heat fluxes were measured applying the surface temperature method and special heat flux sensors. The paper also includes an assessment of different sensor types with respect to accuracy and applicability.
X