Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Overview of the European “Particulates” Project on the Characterization of Exhaust Particulate Emissions from Road Vehicles: Results for Heavy Duty Engines

2004-06-08
2004-01-1986
This paper presents an overview of the results on heavy duty engines collected in the “PARTICULATES” project, which aimed at the characterization of exhaust particle emissions from road vehicles. The same exhaust gas sampling and measurement system as employed for the measurements on light duty vehicles [1] was used. Measurements were made in three labs to evaluate a wide range of particulate properties with a range of heavy duty engines and fuels. The measured properties included particle number, with focus separately on nucleation mode and solid particles, particle active surface and total mass. The sample consisted of 10 engines, ranging from Euro-I to prototype Euro-V technologies. The same core diesel fuels were used as in the light duty programme, mainly differentiated with respect to their sulphur content. Additional fuels were tested by some partners to extend the knowledge base.
Technical Paper

Can the Technology for Heavy Duty Diesel Engines be Common for Future Emission Regulations in USA, Japan and Europe?

2003-03-03
2003-01-0344
Exhaust emission legislation world-wide have a common trend towards very low limits, measured for compliance in transient cycles specific for the United States, Japan and Europe. The emission development strategy is focussing on lowest engine-out emissions to require a minimum of exhaust gas aftertreatment. The base engine concept is described and test results, complying with Euro 4, are shown. The emission reduction development for future regulations requires exhaust gas aftertreatment, test results are shown for US 2007, JNLTR and Euro 5. With exhaust gas aftertreatment, discussed in the appendix, the engine development is faced with a big challenge to ensure the minimum exhaust gas temperature required for their proper function.
Technical Paper

The Clean Heavy Duty Diesel Engine of the Future: Strategies for Emission Compliance

2001-11-01
2001-28-0045
The internal combustion engines, and the heavy duty truck diesel engines in particular, are facing a severe challenge to cope with the upcoming stringent emission legislation world-wide. To comply with these low limits, engine internal measures must be complemented with exhaust gas aftertreatment systems with sophisticated electronic control. A reduction of NOx and particulate emission of more than 90% is required. Various strategies to comply with Euro 4, 5 and US 2007 are discussed, also in view of engine performance, fuel economy and cooling system load. Recommendations are given for the most suitable approach to comply also in future with emission legislation in Europe and the United States.
Technical Paper

Impact of Future Exhaust Gas Emission Legislation on the Heavy Duty Truck Engine

2001-03-05
2001-01-0186
Emission standards as proposed in Europe and the United States for heavy duty diesel engines will require a NOx and particulate reduction of more than 90%. This cannot be achieved by internal engine measures alone. Aftertreatment systems, for either one or both emission components, plus sophisticated electronic control strategies will be required. Various strategies to comply with EU 4, 5 and US 2007 are discussed, also showing their impact on engine performance. For typical 1 and 2 liter per cylinder engines, emission reduction concepts are assessed to identify the most suitable technology for major worldwide markets. The assessment is based on thermodynamic studies, test-bed results and estimates on cost and infrastructure implications.
Technical Paper

Ways to Meet Future Emission Standards with Diesel Engine Powered Sport Utility Vehicles (SUV)

2000-03-06
2000-01-0181
The paper reports on the outcome of a still on-going joint-research project with the objective of establishing a demonstrator high speed direct injection (HSDI) diesel engine in a Sport Utility Vehicle (SUV) which allows to exploit the effectiveness of new engine and aftertreatment technologies for reducing exhaust emissions to future levels of US/EPA Tier 2 and Euro 4. This objective should be accomplished in three major steps: (1) reduce NOx by advanced engine technologies (cooled EGR, flexible high pressure common rail fuel injection system, adapted combustion system), (2) reduce particulates by the Continuous Regeneration Trap (CRT), and (3) reduce NOx further by a DeNOx aftertreatment technology. The current paper presents engine and vehicle results on step (1) and (2), and gives an outlook to step (3).
Technical Paper

Heat Transfer to the Combustion Chamber and Port Walls of IC Engines - Measurement and Prediction

2000-03-06
2000-01-0568
This paper summarizes the results of several investigations on in-cylinder heat transfer during high-pressure and gas exchange phases as well as heat transfer in the inlet and outlet ports for a number of different engine types (DI Diesel, SI and gaseous fueled engine). The paper contains a comparision of simulation results and experimental data derived from heat flux measurements. Numerical results were obtained from zero-, one- and three-dimensional simulation methods. Time and spatially resolved heat fluxes were measured applying the surface temperature method and special heat flux sensors. The paper also includes an assessment of different sensor types with respect to accuracy and applicability.
Technical Paper

The Interaction Between Diesel Fuel Density and Electronic Engine Management Systems

1996-10-01
961975
The influence of fuel density on exhaust emissions from diesel engines has been investigated in a number of studies and these have generally concluded that particulate emissions rise with increasing density This paper reviews recent work in this area, including the European Programme on Emissions, Fuels and Engine Technologies (EPEFE) and reports on a complementary study conducted by CONCAWE, in cooperation with AVL List GmbH The project was carried out with a passenger car equipped with an advanced technology high speed direct injection turbocharged / intercooled diesel engine fitted with a complex engine management system which was referenced to a specific fuel density This production model featured electronic diesel control, closed loop exhaust gas recirculation and an exhaust oxidation catalyst Tests were carried out with two EPEFE fuels which excluded the influence of key fuel properties other than density (828 8 and 855 1 kg/m3) Engine operation was adjusted for changes in fuel density by resetting the electronic programmable, read-only memory to obtain the same energy output from the two test fuels In chassis dynamometer tests over the ECE15 + EUDC test cycle the major impact of fuel density on particulate emissions for advanced engine technology/engine management systems was established A large proportion of the density effect on particulate and NOx emissions was due to physical interaction between fuel density and the electronic engine management system Limited bench engine testing of the basic engine showed that nearly complete compensation of the density effect on smoke (particulate) emissions could be achieved when no advanced technology was applied
X