Refine Your Search




Search Results

Journal Article

Development of the Combustion System for a Flexible Fuel Turbocharged Direct Injection Engine

Gasoline turbocharged direct injection (GTDI) engines, such as EcoBoost™ from Ford, are becoming established as a high value technology solution to improve passenger car and light truck fuel economy. Due to their high specific performance and excellent low-speed torque, improved fuel economy can be realized due to downsizing and downspeeding without sacrificing performance and driveability while meeting the most stringent future emissions standards with an inexpensive three-way catalyst. A logical and synergistic extension of the EcoBoost™ strategy is the use of E85 (approximately 85% ethanol and 15% gasoline) for knock mitigation. Direct injection of E85 is very effective in suppressing knock due to ethanol's high heat of vaporization - which increases the charge cooling benefit of direct injection - and inherently high octane rating. As a result, higher boost levels can be achieved while maintaining optimal combustion phasing giving high thermal efficiency.
Journal Article

Computational Study of the Aerodynamics of a Realistic Car Model by Means of RANS and Hybrid RANS/LES Approaches

The aerodynamic properties of a BMW car model, representing a 40%-scaled model of a relevant car configuration, are studied computationally by means of the Unsteady RANS (Reynolds-Averaged Navier-Stokes) and Hybrid RANS/LES (Large-Eddy Simulation) approaches. The reference database (geometry, operating parameters and surface pressure distribution) are adopted from an experimental investigation carried out in the wind tunnel of the BMW Group in Munich (Schrefl, 2008). The present computational study focuses on validation of some recently developed turbulence models for unsteady flow computations in conjunction with the universal wall treatment combining integration up to the wall and high Reynolds number wall functions in such complex flow situations. The turbulence model adopted in both Unsteady RANS and PANS (Partially-Averaged Navier Stokes) frameworks is the four-equation ζ − f formulation of Hanjalic et al. (2004) based on the Elliptic Relaxation Concept (Durbin, 1991).
Journal Article

A Study on Operation Fluid Consumption for Heavy Duty Diesel Engine Application using both, EGR and SCR

This paper describes a method for optimization of engine settings in view of best total cost of operation fluids. Under specific legal NOX tailpipe emissions requirements the engine out NOX can be matched to the current achievable SCR NOX conversion efficiency. In view of a heavy duty long haul truck application various specific engine operation modes are defined. A heavy duty diesel engine was calibrated for all operation modes in an engine test cell. The characteristics of engine operation are demonstrated in different transient test cycles. Optimum engine operation mode (EOM) selection strategies between individual engine operation modes are discussed in view of legal test cycles and real world driving cycles which have been derived from on-road tests.
Journal Article

A Model-Based Configuration Approach for Automotive Real-Time Operating Systems

Automotive embedded systems have become very complex, are strongly integrated, and the safety-criticality and real-time constraints of these systems raise new challenges. The OSEK/VDX standard provides an open-ended architecture for distributed real-time capable units in vehicles. This is supported by the OSEK Implementation Language (OIL), a language aiming at specifying the configuration of these real-time operating systems. The challenge, however, is to ensure consistency of the concept constraints and configurations along the entire product development. The contribution of this paper is to bridge the existing gap between model-driven systems engineering and software engineering for automotive real-time operating systems (RTOS). For this purpose a bidirectional tool bridge has been established based on OSEK OIL exchange format files.
Technical Paper

Estimation of Diesel Soot Particles in Exhaust Gas Emission and Its Accumulation in Diesel Particulate Filter Using Graphical Calculation Model

To avoid frequent regeneration intervals leading to expeditious ageing of the catalyst and substantial fuel penalty for the owner, it is always desired to estimate the soot coming from diesel exhaust emission, the soot accumulated and burnt in the Diesel Particulate Filter (DPF). Certain applications and vehicle duty cycles cannot make use of the differential pressure sensor for estimating the soot loading in the DPF because of the limitations of the sensor tolerance and measurement accuracy. The physical soot model is always active and hence a precise and more accurate model is preferred to calibrate & optimize the regeneration interval. This paper presents the approach to estimate the engine-out soot and the accumulated soot in the DPF using a graphical calculation tool (AVL Concerto CalcGraf™).
Technical Paper

21SIAT-0638 - Fleet Analytics - A Data-Driven and Synergetic Fleet Validation Approach

Current developments in automotive industry such as hybrid powertrains and the continuously increasing demands on emission control systems, are pushing complexity still further. Validation of such systems lead to a huge amount of test cases and hence extreme testing efforts on the road. At the same time the pressure to reduce costs and minimize development time is creating challenging boundaries on development teams. Therefore, it is of utmost importance to utilize testing and validation prototypes in the most efficient way. It is necessary to apply high levels of instrumentation and collect as much data as possible. And a streamlined data pipeline allows the fleet managers to get new insights from the raw data and control the validation vehicles as well as the development team in the most efficient way. In this paper we will demonstrate a data-driven approach for validation testing.
Journal Article

Sulfur Poisoning of a NOx Storage Catalyst - A Comprehensive Modelling Approach

This paper describes the development of a 0-D-sulfur poisoning model for a NOx storage catalyst (NSC). The model was developed and calibrated using findings and data obtained from a passenger car diesel engine used on testbed. Based on an empirical approach, the developed model is able to predict not only the lower sulfur adsorption with increasing temperature and therefore the higher SOx (SO2 and SO3) slip after NSC, but also the sulfur saturation with increasing sulfur loading, resulting in a decrease of the sulfur adsorption rate with ongoing sulfation. Furthermore, the 0-D sulfur poisoning model was integrated into an existing 1-D NOx storage catalyst kinetic model. The combination of the two models results in an “EAS Model” (exhaust aftertreatment system) able to predict the deterioration of NOx-storage in a NSC with increasing sulfation level, exhibiting higher NOx-emissions after the NSC once it is poisoned.
Technical Paper

Numerical Investigation and Experimental Comparison of ECN Spray G at Flash Boiling Conditions

Fuel injection is a key process influencing the performance of Gasoline Direct Injection (GDI) Engines. Injecting fuel at elevated temperature can initiate flash boiling which can lead to faster breakup, reduced penetration, and increased spray-cone angle. Thus, it impacts engine efficiency in terms of combustion quality, CO2, NOx and soot emission levels. This research deals with modelling of flash boiling processes occurring in gasoline fuel injectors. The flashing mass transfer rate is modelled by the advanced Hertz-Knudsen model considering the deviation from the thermodynamic-equilibrium conditions. The effect of nucleation-site density and its variation with degree of superheat is studied. The model is validated against benchmark test cases and a substantiated comparison with experiment is achieved.
Journal Article

High Performance Cooling and EGR Systems as a Contribution to Meeting Future Emission Standards

In relation to further tightening of the emissions legislation for on-road heavy duty Diesel engines, the future potential of cooled exhaust gas recirculation (EGR) as a result of developments in the cooling systems of such engines has been evaluated. Four basic engine concepts were investigated: an engine with SCR exhaust gas aftertreatment for control of the nitrogen oxides (NOx), an engine with cooled EGR and particulate (PM) filtration, an engine with low pressure EGR and PM filtration and an engine with two stage low temperature cooled EGR also with a particulate filter. A 10.5 litre engine was calibrated and tested under conditions representative for each concept, such that 1.7 g/kWh (1.3 g/bhp-hr) NOx could be achieved over the ESC and ETC. This corresponds to emissions 15% below the Euro 5 legislation level.
Journal Article

Compact Engine Architecture for Best Fuel Efficiency and High Performance - Challenge or Contradiction

The world of automotive engineering shows a clear direction for upcoming development trends. Stringent fleet average fuel consumption targets and CO2 penalties as well as rising fuel prices and the consumer demand to lower operating costs increases the engineering efforts to optimize fuel economy. Passenger car engines have the benefit of higher degree of technology which can be utilized to reach the challenging targets. Variable valve timing, downsizing and turbo charging, direct gasoline injection, highly sophisticated operating strategies and even more electrification are already common technologies in the automotive industry but can not be directly carried over into a motorcycle application. The major differences like very small packaging space, higher rated speeds, higher power density in combination with lower production numbers and product costs do not allow implementation such high of degree of advanced technology into small-engine applications.
Journal Article

Sampling of Non-Volatile Vehicle Exhaust Particles: A Simplified Guide

Recently, a particle number (PN) limit was introduced in the European light-duty vehicles legislation. The legislation requires measurement of PN, and particulate mass (PM), from the full dilution tunnel with constant volume sampling (CVS). Furthermore, PN measurements will be introduced in the next stage of the European Heavy-Duty regulation. Heavy-duty engine certification can be done either from the CVS or from a partial flow dilution system (PFDS). For research and development purposes, though, measurements are often conducted from the raw exhaust, thereby avoiding the high installation costs of CVS and PFDS. Although for legislative measurements requirements exist regarding sampling and transport of the aerosol sample, such requirements do not necessarily apply for raw exhaust measurements. Thus, measurement differences are often observed depending on where in the experimental set up sampling occurs.
Journal Article

Overview of Soot Emission Measurements Instrumentation: From Smoke and Filter Mass to Particle Number

Particulate emissions cause adverse health effects and for this reason they are regulated since the 80s. Vehicle regulations cover particulate emission measurements of a model before its sale, known as type approval or homologation. For heavy-duty engines the emissions are measured on an engine dynamometer with steady state points and transient cycles. For light-duty vehicles (i.e. the full power train) the particulate emissions are assessed on a chassis dynamometer. The measurement of particulate emissions is conducted either by diluting the whole exhaust in a dilution tunnel with constant volume sampling or by extracting a small proportional part of the exhaust gas and diluting it. Particulate emissions are measured by passing part of the diluted exhaust aerosol through a filter paper. The increase of the weight of the filter is used to calculate the particulate matter mass (PM) emissions.
Technical Paper

Comparison of Particulate Matter and Number Emissions from a Floating and a Fixed Caliper Brake System of the Same Lining Formulation

The particulate emissions of two brake systems were characterized in a dilution tunnel optimized for PM10 measurements. The larger of them employed a fixed caliper (FXC) and the smaller one a floating caliper (FLC). Both used ECE brake pads of the same lining formulation. Measured properties included gravimetric PM2.5 and PM10, Particle Number (PN) concentrations of both untreated and thermally treated (according to exhaust PN regulation) particles using Condensation Particle Counters (CPCs) having 23 and 10 nm cut-off sizes, and an Optical Particle Sizer (OPS). The brakes were tested over a section (trip-10) novel test cycle developed from the database of the Worldwide harmonized Light-Duty vehicles Test Procedure (WLTP). A series of trip-10 tests were performed starting from unconditioned pads, to characterize the evolution of emissions until their stabilization. Selected tests were also performed over a short version of the Los Angeles City Cycle.
Journal Article

A Metal Fibrous Filter for Diesel Hybrid Vehicles

Trends towards lower vehicle fuel consumption and smaller environmental impact will increase the share of Diesel hybrids and Diesel Range Extended Vehicles (REV). Because of the Diesel engine presence and the ever tightening soot particle emissions, these vehicles will still require soot particle emissions control systems. Ceramic wall-flow monoliths are currently the key players in the Diesel Particulate Filter (DPF) market, offering certain advantages compared to other DPF technologies such as the metal based DPFs. The latter had, in the past, issues with respect to filtration efficiency, available filtration area and, sometimes, their manufacturing cost, the latter factor making them less attractive for most of the conventional Diesel engine powered vehicles. Nevertheless, metal substrate DPFs may find a better position in vehicles like Diesel hybrids and REVs in which high instant power consumption is readily offered enabling electrical filter regeneration.
Technical Paper

The Application of a New Software Tool for Separating Engine Combustion and Mechanical Noise Excitation

The optimization of engine NVH is still an important aspect for vehicle interior and exterior noise radiation. To optimize the engine noise / vibration contribution to the vehicle, a complete understanding of the excitation mechanism, the vibration transfer in the engine structure and the radiation efficiency of the individual engine components is required. Concerning the excitation within the engine, a very efficient analysis methodology for the combustion- and mechanical excitation within gasoline and diesel engines has been developed. Out of this methodology a software tool has been designed for a fast, efficient and detailed evaluation of the combustion- and mechanical excitation content of total engine noise. Recently this software tool has been successfully applied in engine NVH optimization work for defining the best optimization strategies for engine NVH reduction and noise quality improvement especially with respect to combustion excitation.
Technical Paper

HD Base Engine Development to Meet Future Emission and Power Density Challenges of a DDI™ Engine

This paper describes development challenges for Heavy-Duty (HD) on-highway Diesel Direct Injection (DDI™) engines to meet the extremely advanced US-EPA 2010 (later named US 2010) emission limits while further increasing power density in combination with competitive engine efficiency. It discusses technologies and solutions for lowest engine-out emissions in combination with most competitive fuel consumption values and excellent dynamic behavior. To achieve these challenging targets, base engine hardware requirements are described. In detail the development of EGR systems, especially the challenges of running high EGR rates over the whole engine speed range also at high load, the dynamic EGR control for transient engine operation to achieve lowest NOx emissions at the smoke limit with excellent load response is discussed. Also the effect of the turbo-machinery on power density and transient engine behavior is shown.
Technical Paper

OBD Algorithms: Model-based Development and Calibration

The OBD II and EOBD legislation have significantly increased the number of system components that have to be monitored in order to avoid emissions degradation. Consequently, the algorithm design and the related calibration effort is becoming more and more challenging. Because of decreasing OBD thresholds, the monitoring strategy accuracy, which is tightly related with the components tolerances and the calibration quality, has to be improved. A model-based offline simulation of the monitoring strategies allows consideration of component and sensor tolerances as well as a first calibration optimization in the early development phase. AVL applied and improved a methodology that takes into account this information, which would require a big effort using testbed or vehicle measurements. In many cases a component influence analysis is possible before hardware is available for testbed measurements.
Technical Paper

The Role of Fuel Cells in Commercial Vehicles

Fuel Cells (FC) are promising candidates to reduce energy consumption and, hence, to improve the global climate situation due to significant gains in the process efficiencies. Whereas the development of fuel cells for passenger car applications has intensified during the last years, commercial vehicle applications have not been in the focus of developers so far. A reason for that is the limited availability of fuels such as hydrogen. Commercial vehicles are in the most cases operated with diesel fuel. AVL has developed three fuel cell applications for commercial vehicles operated with diesel fuel.
Technical Paper

Objective Evaluation of Vehicle Driveability

Vehicle driveability evolves more and more as a key decisive factor for marketability and competitiveness of passenger cars, since the final decision of customers to buy a car is usually taken after a more or less intensive test drive. Car manufacturers currently evaluate vehicle driveability with subjective assessments and by having their experienced test drivers fill out form sheets. These assessments are time and cost intensive, limited in repeatability and not objective. The real customer requirements cannot be recognized in detail with this method. This paper describes a completely new approach for an objective and real time evaluation of relevant driveability criteria, for use in a vehicle and on a high dynamic test bed. The vehicle application enables an objective comparison between vehicles and an application as a development tool in many development and calibration phases, where ever fast and objective driveability results are required.
Technical Paper

Gasoline DI Engines: The Complete System Approach By Interaction of Advanced Development Tools

Gasoline direct injection is one of the main issues of actual worldwide SI engine development activities. It requires a comprehensive system approach from the basic considerations on optimum combustion system configuration up to vehicle performance and driveability. The general characteristics of currently favored combustion system configurations are discussed in this paper regarding both engine operation and design aspects. The engine performance, especially power output and emission potential of AVL's DGI engine concept is presented including the interaction of advanced tools like optical diagnostics and 3D-CFD simulation in the combustion system development process. The application of methods like tomographic combustion analysis for investigations in the multicylinder engine within further stages of development is demonstrated. The system layout and operational strategies for fuel economy in conjunction with exhaust gas aftertreatment requirements are discussed.