Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Journal Article

A Study on Operation Fluid Consumption for Heavy Duty Diesel Engine Application using both, EGR and SCR

2013-09-24
2013-01-2474
This paper describes a method for optimization of engine settings in view of best total cost of operation fluids. Under specific legal NOX tailpipe emissions requirements the engine out NOX can be matched to the current achievable SCR NOX conversion efficiency. In view of a heavy duty long haul truck application various specific engine operation modes are defined. A heavy duty diesel engine was calibrated for all operation modes in an engine test cell. The characteristics of engine operation are demonstrated in different transient test cycles. Optimum engine operation mode (EOM) selection strategies between individual engine operation modes are discussed in view of legal test cycles and real world driving cycles which have been derived from on-road tests.
Technical Paper

Objective Evaluation of Vehicle Driveability

1998-02-23
980204
Vehicle driveability evolves more and more as a key decisive factor for marketability and competitiveness of passenger cars, since the final decision of customers to buy a car is usually taken after a more or less intensive test drive. Car manufacturers currently evaluate vehicle driveability with subjective assessments and by having their experienced test drivers fill out form sheets. These assessments are time and cost intensive, limited in repeatability and not objective. The real customer requirements cannot be recognized in detail with this method. This paper describes a completely new approach for an objective and real time evaluation of relevant driveability criteria, for use in a vehicle and on a high dynamic test bed. The vehicle application enables an objective comparison between vehicles and an application as a development tool in many development and calibration phases, where ever fast and objective driveability results are required.
Technical Paper

Sound - Design for Motorcycles Influence of Different Parameters on the Sound

2006-11-13
2006-32-0084
Beside performance, handling and styling the sound characteristic of a motorcycle is a very important feature for the acceptance of the product by the customers and therefore the commercial success of a new product. Creating a special brand sound becomes more and more important to create a product that can be easily distinguished from competitor products and is therefore considered to be something special. On the other hand the legal limits in terms of pass - by noise allow for a very little margin for the creation of a special sound. During the product sound design phase the different perceptions of the rider wearing a helmet and pedestrians have to be considered. In passenger cars sound design has been known for a long time and the creation of a special sound for the driver inside the passenger compartment can be achieved with little influence on the exterior noise and therefore on the noise which is limited by legislation.
Technical Paper

Design impacts on CVS systems meeting future requirements for equivalent zero emissions vehicles

2000-06-12
2000-05-0347
The latest legislation requires a dramatic reduction of motor vehicle exhaust emission. This is also a big challenge for emission measurement instrumentation, because of almost zero concentrations of certain components in the exhaust. For current measurement devices, which are recommended by the legislation, it is almost impossible to determine such low emission levels with adequate accuracy. The paper describes a new Constant Volume Sampling (CVS) system with reduced dilution, warming and quick flow rate changing capability. Possible solutions are discussed and the properties of data measured with test facilities which are prepared to cover S-ULEV and EURO IV applications are described. Also the selection of used materials is of rising importance. The tests were performed on a dynamic engine test bed which was equipped with such a CVS system and with emission analyzing systems for raw exhaust and diluted measurements.
Technical Paper

Pass-By Noise Prediction for Trucks Based on Powertrain Test-Cell Measurements

2001-04-30
2001-01-1564
The paper outlines and discusses the possibilities of a new instrumentation tool for the analysis of engine and gearbox noise radiation and the prediction of pass-by noise from powertrain test cell measurements. Based on a 32 channel data acquisition board, the system is intended to be quick and easy to apply in order to support engineers during their daily work in the test cell. The pass-by prediction is a purely experimental approach with test cell recordings being weighted by measured transfer functions (from the powertrain compartment to the pass-by point).
Technical Paper

Testing of a Long Haul Demonstrator Vehicle with a Waste Heat Recovery System on Public Road

2016-09-27
2016-01-8057
This paper presents the results of a long haul truck Waste Heat Recovery (WHR) system from simulation, test bench and public road testing. The WHR system uses exhaust gas recuperation only and utilizes up to 110kW of exhaust waste heat for the Organic Rankine Cycle (ORC) in a typical European driving cycle. The testing and simulation procedures are explained in detail together with the tested and simulated WHR fuel consumption benefit for different real life cycles in Europe and USA reaching fuel consumption benefits between 2.5% and 3.4%. Additionally a technology road map is shown which discusses the role of WHR in fulfilling the future CARB BSFC target value (minimum in map) of around 172 g/kWh.
Technical Paper

Highly Integrated Fuel Cell Analysis Infrastructure for Advanced Research Topics

2017-03-28
2017-01-1180
The limitation of global warming to less than 2 °C till the end of the century is regarded as the main challenge of our time. In order to meet COP21 objectives, a clear transition from carbon-based energy sources towards renewable and carbon-free energy carriers is mandatory. Polymer electrolyte membrane fuel cells (PEMFC) allow an energy-efficient, resource-efficient and emission-free conversion of regenerative produced hydrogen. For these reasons fuel cell technologies emerge in stationary, mobile and logistic applications with acceptable cruising ranges as well as short refueling times. In order to perform applied research in the area of PEMFC systems, a highly integrated fuel cell analysis infrastructure for systems up to 150 kW electric power was developed and established within a cooperative research project by HyCentA Research GmbH and AVL List GmbH in Graz, Austria. A novel open testing facility with hardware in the loop (HiL) capability is presented.
Technical Paper

A New Device for Transient Measurement of Ultralow Soot Emissions

2004-11-16
2004-01-3267
Future legislation, like EURO IV and EURO V or the US 2007 HD regulation will have massive reduction of particulate emission limits. For this beside improvement of engine combustion also exhaust aftertreatment systems are under investigation, like Diesel Particulate Filters (DPF), or Selective Catalytic Reduction (SCR) of Nitrogen Oxides. For all those tasks transient soot emission monitoring is one of the key features. To meet this demand a new device for the on-line measurement of soot emitted by combustion engines has been developed. Based on the photoacoustic principle, which has been optimized for automotive applications and easy use in test cells, the instrument shows a sensitivity of 5μg/m3, which is lower than current particulate immission standards in ambient air, and a time resolution of 1 sec. In the paper first the principles of measurement are shown, and then the specifications and results from measurements of very low soot concentration in the exhaust gas are presented.
Technical Paper

Evaluation of a New Design for CVS-Systems Meeting the Requirements of S-ULEV and EURO IV

2000-03-06
2000-01-0800
The latest legislation requires the automotive industry to once again reduce the emission levels of their latest vehicles. This leads to a new challenge in the field of emission measurement, because the concentrations of certain components of the exhaust gases are extremely low. For current measurement devices, which are recommended by the legislation, it is almost impossible to determine such low emission levels with the necessary accuracy. This study evaluates the features of an improved CVS system (Constant Volume Sampling) with the possibility of heating and the ability of changing flow rates quickly. Possible solutions are discussed and the properties of data measured with test facilities which are prepared to cover S-ULEV and EURO IV applications are described. The tests were performed on a dynamic engine test bed which was equipped with such a CVS system and with emission analyzing systems for raw exhaust and diluted measurements.
Technical Paper

Objective Driveability Development of Motorcycles with AVL-DRIVE

2014-11-11
2014-32-0020
Originally developed for the automotive market, a fully automatic real-time measurement tool AVL-DRIVE is commercially available for analyzing and scoring vehicle drive quality, also known as “Driveability”. This system from AVL uses its own transducers, calibrated to the sensitivity and response of the human body to measure the forces felt by the driver, such as acceleration, shock, surging, vibration, noise, etc. Simultaneously, the vehicle operating conditions are measured, (throttle grip angle, engine speed, gear, vehicle speed, temperature, etc.). Because the software is pre-programmed with the scores from a multitude of different vehicles in each vehicle class via neural networks and fuzzy logic formula, a quality score with reference to similar competitor vehicles is instantly given. This tool is already successfully implemented in the market for years to investigate such driveability parameters for passenger cars.
Technical Paper

Automated Model-Based Calibration for Drivability Using a Virtual Engine Test Cell

2015-04-14
2015-01-1628
Increasing powertrain complexity and the growing number of vehicle variants are putting a strain on current calibration development processes. This is particularly challenging for vehicle drivability calibration, which is traditionally completed late in the development cycle, only after mature vehicle hardware is available. Model-based calibration enables a shift in development tasks from the real world to the virtual world, allowing for increased system robustness while reducing development costs and time. A unique approach for drivability calibration was developed by incorporating drivability analysis software with online optimization software into a virtual engine test cell environment. Real-time, physics-based engine and vehicle simulation models were coupled with real engine controller hardware and software to execute automated drivability calibration within this environment.
Technical Paper

Design of a Laboratory Sampling System for Brake Wear Particle Measurements

2022-09-19
2022-01-1179
Brake wear is one of the dominant sources of traffic-related particulate matter emissions and is associated with various adverse environmental and health hazards. To address this issue, the UNECE mandated the Particle Measurement Program to develop a harmonized methodology for sampling and measuring brake wear particles with a full-flow sampling tunnel on a brake dynamometer. Here we present the design of a novel, fully PMP compliant sampling tunnel. The dimensions and general layout of the tunnel are based on minimization of super-micron particle losses and consideration of space limitations in brake-dynamometer setups as well as the need for efficient utilization of the test facilities (reduced testing times). Numerical calculations suggested that the critical section of the system is the sampling train from the sample probes to the instrumentation inlet/filter holder.
Technical Paper

Results, Assessment and Legislative Relevance of RDE and Fuel Consumption Measurements of Two-Wheeler-Applications

2017-11-05
2017-32-0042
The reduction of environmentally harmful gases and the ambitions to reduce the exploitation of fossil resources lead to stricter legislation for all mobile sources. Legislative development significantly affected improvements in emissions and fuel consumptions over the last years, mainly measured under laboratory conditions. But real world operating scenarios have a major influence on emissions and it is already well known that these values considerably differ from officially published figures [1]. There are regulated emissions by the European Commission by means of real driving scenarios for passenger cars. A methodology to measure real drive emissions RDE is therefore well approved for automotive applications but was not adapted for two-wheeler-applications yet [2]. Hence measurements have been performed on-road and on chassis dynamometer for motorcycles with the state of the art RDE measurement equipment to be prepared for possible future legislation.
Technical Paper

Current Findings in Measurement Technology and Measurement Methodology for RDE and Fuel Consumption for Two-Wheeler-Applications

2017-11-05
2017-32-0041
Real world operating scenarios have a major influence on emissions and fuel consumption. To reduce climate-relevant and environmentally harmful gaseous emissions and the exploitation of fossil resources, deep understanding concerning the real drive behavior of mobile sources is needed because emissions and fuel consumption of e.g. passenger cars, operated in real world conditions, considerably differ from the officially published values which are valid for specific test cycles only [1]. Due to legislative regulations by the European Commission a methodology to measure real drive emissions RDE is well approved for heavy duty vehicles and automotive applications but may not be adapted similar to two-wheeler-applications. This is due to several issues when using the state of the art portable emission measurement system PEMS that will be discussed.
Technical Paper

Measuring Brake Wear Particles with a Real-Driving Emissions Sampling System on a Brake Dynamometer

2022-09-19
2022-01-1180
Brake wear particles are recognized as one of the dominant sources of road transport particulate matter emissions and are linked to adverse health effects and environmental impact. The UNECE mandated the Particle Measurement Program to address this issue, by developing a harmonized sampling and measurement methodology for the investigation of brake wear particles on a brake dynamometer (dyno). However, although the brake dyno approach with tightly controlled test conditions offers good reproducibility, a multitude of changing vehicle and surrounding conditions make real-driving emissions measurement a highly relevant task. Here we show two different prototypes for on-road particle measurement with minimal impact of the measurement setup on the emission behavior, tested on a brake dyno.
X