Refine Your Search

Topic

Author

Search Results

Journal Article

Computational Study of the Aerodynamics of a Realistic Car Model by Means of RANS and Hybrid RANS/LES Approaches

2014-04-01
2014-01-0594
The aerodynamic properties of a BMW car model, representing a 40%-scaled model of a relevant car configuration, are studied computationally by means of the Unsteady RANS (Reynolds-Averaged Navier-Stokes) and Hybrid RANS/LES (Large-Eddy Simulation) approaches. The reference database (geometry, operating parameters and surface pressure distribution) are adopted from an experimental investigation carried out in the wind tunnel of the BMW Group in Munich (Schrefl, 2008). The present computational study focuses on validation of some recently developed turbulence models for unsteady flow computations in conjunction with the universal wall treatment combining integration up to the wall and high Reynolds number wall functions in such complex flow situations. The turbulence model adopted in both Unsteady RANS and PANS (Partially-Averaged Navier Stokes) frameworks is the four-equation ζ − f formulation of Hanjalic et al. (2004) based on the Elliptic Relaxation Concept (Durbin, 1991).
Journal Article

A Study on Operation Fluid Consumption for Heavy Duty Diesel Engine Application using both, EGR and SCR

2013-09-24
2013-01-2474
This paper describes a method for optimization of engine settings in view of best total cost of operation fluids. Under specific legal NOX tailpipe emissions requirements the engine out NOX can be matched to the current achievable SCR NOX conversion efficiency. In view of a heavy duty long haul truck application various specific engine operation modes are defined. A heavy duty diesel engine was calibrated for all operation modes in an engine test cell. The characteristics of engine operation are demonstrated in different transient test cycles. Optimum engine operation mode (EOM) selection strategies between individual engine operation modes are discussed in view of legal test cycles and real world driving cycles which have been derived from on-road tests.
Journal Article

A Model-Based Configuration Approach for Automotive Real-Time Operating Systems

2015-04-14
2015-01-0183
Automotive embedded systems have become very complex, are strongly integrated, and the safety-criticality and real-time constraints of these systems raise new challenges. The OSEK/VDX standard provides an open-ended architecture for distributed real-time capable units in vehicles. This is supported by the OSEK Implementation Language (OIL), a language aiming at specifying the configuration of these real-time operating systems. The challenge, however, is to ensure consistency of the concept constraints and configurations along the entire product development. The contribution of this paper is to bridge the existing gap between model-driven systems engineering and software engineering for automotive real-time operating systems (RTOS). For this purpose a bidirectional tool bridge has been established based on OSEK OIL exchange format files.
Technical Paper

21SIAT-0638 - Fleet Analytics - A Data-Driven and Synergetic Fleet Validation Approach

2021-09-22
2021-26-0499
Current developments in automotive industry such as hybrid powertrains and the continuously increasing demands on emission control systems, are pushing complexity still further. Validation of such systems lead to a huge amount of test cases and hence extreme testing efforts on the road. At the same time the pressure to reduce costs and minimize development time is creating challenging boundaries on development teams. Therefore, it is of utmost importance to utilize testing and validation prototypes in the most efficient way. It is necessary to apply high levels of instrumentation and collect as much data as possible. And a streamlined data pipeline allows the fleet managers to get new insights from the raw data and control the validation vehicles as well as the development team in the most efficient way. In this paper we will demonstrate a data-driven approach for validation testing.
Journal Article

Sulfur Poisoning of a NOx Storage Catalyst - A Comprehensive Modelling Approach

2016-04-05
2016-01-0964
This paper describes the development of a 0-D-sulfur poisoning model for a NOx storage catalyst (NSC). The model was developed and calibrated using findings and data obtained from a passenger car diesel engine used on testbed. Based on an empirical approach, the developed model is able to predict not only the lower sulfur adsorption with increasing temperature and therefore the higher SOx (SO2 and SO3) slip after NSC, but also the sulfur saturation with increasing sulfur loading, resulting in a decrease of the sulfur adsorption rate with ongoing sulfation. Furthermore, the 0-D sulfur poisoning model was integrated into an existing 1-D NOx storage catalyst kinetic model. The combination of the two models results in an “EAS Model” (exhaust aftertreatment system) able to predict the deterioration of NOx-storage in a NSC with increasing sulfation level, exhibiting higher NOx-emissions after the NSC once it is poisoned.
Journal Article

High Performance Cooling and EGR Systems as a Contribution to Meeting Future Emission Standards

2008-04-14
2008-01-1199
In relation to further tightening of the emissions legislation for on-road heavy duty Diesel engines, the future potential of cooled exhaust gas recirculation (EGR) as a result of developments in the cooling systems of such engines has been evaluated. Four basic engine concepts were investigated: an engine with SCR exhaust gas aftertreatment for control of the nitrogen oxides (NOx), an engine with cooled EGR and particulate (PM) filtration, an engine with low pressure EGR and PM filtration and an engine with two stage low temperature cooled EGR also with a particulate filter. A 10.5 litre engine was calibrated and tested under conditions representative for each concept, such that 1.7 g/kWh (1.3 g/bhp-hr) NOx could be achieved over the ESC and ETC. This corresponds to emissions 15% below the Euro 5 legislation level.
Journal Article

A Metal Fibrous Filter for Diesel Hybrid Vehicles

2011-04-12
2011-01-0604
Trends towards lower vehicle fuel consumption and smaller environmental impact will increase the share of Diesel hybrids and Diesel Range Extended Vehicles (REV). Because of the Diesel engine presence and the ever tightening soot particle emissions, these vehicles will still require soot particle emissions control systems. Ceramic wall-flow monoliths are currently the key players in the Diesel Particulate Filter (DPF) market, offering certain advantages compared to other DPF technologies such as the metal based DPFs. The latter had, in the past, issues with respect to filtration efficiency, available filtration area and, sometimes, their manufacturing cost, the latter factor making them less attractive for most of the conventional Diesel engine powered vehicles. Nevertheless, metal substrate DPFs may find a better position in vehicles like Diesel hybrids and REVs in which high instant power consumption is readily offered enabling electrical filter regeneration.
Technical Paper

The Application of a New Software Tool for Separating Engine Combustion and Mechanical Noise Excitation

2007-05-15
2007-01-2376
The optimization of engine NVH is still an important aspect for vehicle interior and exterior noise radiation. To optimize the engine noise / vibration contribution to the vehicle, a complete understanding of the excitation mechanism, the vibration transfer in the engine structure and the radiation efficiency of the individual engine components is required. Concerning the excitation within the engine, a very efficient analysis methodology for the combustion- and mechanical excitation within gasoline and diesel engines has been developed. Out of this methodology a software tool has been designed for a fast, efficient and detailed evaluation of the combustion- and mechanical excitation content of total engine noise. Recently this software tool has been successfully applied in engine NVH optimization work for defining the best optimization strategies for engine NVH reduction and noise quality improvement especially with respect to combustion excitation.
Technical Paper

Objective Evaluation of Vehicle Driveability

1998-02-23
980204
Vehicle driveability evolves more and more as a key decisive factor for marketability and competitiveness of passenger cars, since the final decision of customers to buy a car is usually taken after a more or less intensive test drive. Car manufacturers currently evaluate vehicle driveability with subjective assessments and by having their experienced test drivers fill out form sheets. These assessments are time and cost intensive, limited in repeatability and not objective. The real customer requirements cannot be recognized in detail with this method. This paper describes a completely new approach for an objective and real time evaluation of relevant driveability criteria, for use in a vehicle and on a high dynamic test bed. The vehicle application enables an objective comparison between vehicles and an application as a development tool in many development and calibration phases, where ever fast and objective driveability results are required.
Technical Paper

Gasoline DI Engines: The Complete System Approach By Interaction of Advanced Development Tools

1998-02-23
980492
Gasoline direct injection is one of the main issues of actual worldwide SI engine development activities. It requires a comprehensive system approach from the basic considerations on optimum combustion system configuration up to vehicle performance and driveability. The general characteristics of currently favored combustion system configurations are discussed in this paper regarding both engine operation and design aspects. The engine performance, especially power output and emission potential of AVL's DGI engine concept is presented including the interaction of advanced tools like optical diagnostics and 3D-CFD simulation in the combustion system development process. The application of methods like tomographic combustion analysis for investigations in the multicylinder engine within further stages of development is demonstrated. The system layout and operational strategies for fuel economy in conjunction with exhaust gas aftertreatment requirements are discussed.
Technical Paper

Experimental Investigations and Computations of Unsteady Flow Past a Real Car Using a Robust Elliptic Relaxation Closure with a Universal Wall Treatment

2007-04-16
2007-01-0104
In the present work we investigated experimentally and computationally the unsteady flow around a BMW car model including wheels*. This simulation yields mean flow and turbulence fields, enabling the study aerodynamic coefficients (drag and lift coefficients, three-dimensional/spatial wall-pressure distribution) as well as some unsteady flow phenomena in the car wake (analysis of the vortex shedding frequency). Comparisons with experimental findings are presented. The computational approach used is based on solving the complete transient Reynolds-Averaged Navier-Stokes (TRANS) equations. Special attention is devoted to turbulence modelling and the near-wall treatment of turbulence. The flow calculations were performed using a robust, eddy-viscosity-based ζ - ƒ turbulence model in the framework of the elliptic relaxation concept and in conjunction with the universal wall treatment, combining integration up to the wall and wall functions.
Technical Paper

Comparison of Particle Number Measurements from the Full Dilution Tunnel, the Tailpipe and Two Partial Flow Systems

2010-04-12
2010-01-1299
The regulation of particle number (PN) has been introduced in the Euro 5/6 light-duty vehicle legislation, as a result of the light duty inter-laboratory exercise of the Particle Measurement Program (PMP). The heavy-duty inter-laboratory exercise investigates whether the same or a similar procedure can be applied to the heavy-duty regulation. In the heavy-duty exercise two "golden" PN systems sample simultaneously; the first from the full dilution tunnel and the second from the partial flow system. One of the targets of the exercise is to compare the PN results from the two systems. In this study we follow a different approach: We use a PMP compliant system at different positions (full flow, partial flow and tailpipe) and we compare its emissions with a "reference" system always sampling from the full flow dilution tunnel.
Technical Paper

The Diesel Exhaust Aftertreatment (DEXA) Cluster: A Systematic Approach to Diesel Particulate Emission Control in Europe

2004-03-08
2004-01-0694
The DEXA Cluster consisted of three closely interlinked projects. In 2003 the DEXA Cluster concluded by demonstrating the successful development of critical technologies for Diesel exhaust particulate after-treatment, without adverse effects on NOx emissions and maintaining the fuel economy advantages of the Diesel engine well beyond the EURO IV (2000) emission standards horizon. In the present paper the most important results of the DEXA Cluster projects in the demonstration of advanced particulate control technologies, the development of a simulation toolkit for the design of diesel exhaust after-treatment systems and the development of novel particulate characterization methodologies, are presented. The motivation for the DEXA Cluster research was to increase the market competitiveness of diesel engine powertrains for passenger cars worldwide, and to accelerate the adoption of particulate control technology.
Technical Paper

Integrated 1D to 3D Simulation Workflow of Exhaust Aftertreatment Devices

2004-03-08
2004-01-1132
Future limits on emissions for both gasoline and Diesel engines require adequate and advanced systems for the after-treatment of the exhaust gas. Computer models as a complementary tool to experimental investigations are an indispensable part to design reliable after-treatment devices such as catalytic converters and Diesel particulate filters including their influence on the power-train. Therefore, the objective of this contribution is to present an integrated 1D to 3D simulation workflow of of catalytic converters and Diesel particulate filters. The novelty of this approach is that parameters or set of parameters, obtained by a fast and efficient 1D-gas exchange and cycle simulation code for power-trains (AVL (2002a)), are readily transferable onto a 3D general purpose simulation code (AVL (2002b)). Thus, detailed aspects such as spatial distribution of temperatures or heat losses are investigated with only a single effort to estimate parameters.
Technical Paper

Impact of Future Exhaust Gas Emission Legislation on the Heavy Duty Truck Engine

2001-03-05
2001-01-0186
Emission standards as proposed in Europe and the United States for heavy duty diesel engines will require a NOx and particulate reduction of more than 90%. This cannot be achieved by internal engine measures alone. Aftertreatment systems, for either one or both emission components, plus sophisticated electronic control strategies will be required. Various strategies to comply with EU 4, 5 and US 2007 are discussed, also showing their impact on engine performance. For typical 1 and 2 liter per cylinder engines, emission reduction concepts are assessed to identify the most suitable technology for major worldwide markets. The assessment is based on thermodynamic studies, test-bed results and estimates on cost and infrastructure implications.
Technical Paper

The Performance of a Heavy Duty Diesel Engine with a Production Feasible DME Injection System

2001-09-24
2001-01-3629
Over the last few years there has been much interest in DiMethyl Ether (DME) as an alternative fuel for diesel cycle engines. It combines the advantages of a high cetane number with soot free combustion, which makes it eminently suitable for compression ignition engines. However, due to the fact that it is a gas under ambient conditions, it requires special fuel handling and a specially designed fuel injection system, which until recently, was not available. The use of the digital hydraulic operating system (DHOS), combined with a fuel handling system designed to cope with the properties of DME, enables the fuel to be safely and conveniently handled, In addition, the flexibility of the injection system enables injection pressures to be chosen according to the needs of the combustion.
Technical Paper

An integrated 1D/3D workflow for analysis and optimization of injection parameters of a diesel engine

2001-09-23
2001-24-0004
The present contribution gives an overview of the use of different simulation tools for the optimization of injection parameters of a diesel engine. With a one-dimensional tool, the behavior of the mechanics and fluid dynamics of the entire injection system is calculated. This simulation provides information on the dynamic needle lift, injection rates, pressures, etc. The flow within the injector is simulated using a three-dimensional CFD tool. By use of a two-phase model, it is possible to analyze the cavitating flow inside the injector and to calculate the effective nozzle hole area as well as the exit flow characteristics. Mixture formation, combustion and pollutant formation simulation is performed adopting three-dimensional CFD. In order to provide the initial and boundary conditions for the engine CFD simulation and to optimize the engine cycle performance a one-dimensional tool is adopted.
Technical Paper

The Clean Heavy Duty Diesel Engine of the Future: Strategies for Emission Compliance

2001-11-01
2001-28-0045
The internal combustion engines, and the heavy duty truck diesel engines in particular, are facing a severe challenge to cope with the upcoming stringent emission legislation world-wide. To comply with these low limits, engine internal measures must be complemented with exhaust gas aftertreatment systems with sophisticated electronic control. A reduction of NOx and particulate emission of more than 90% is required. Various strategies to comply with Euro 4, 5 and US 2007 are discussed, also in view of engine performance, fuel economy and cooling system load. Recommendations are given for the most suitable approach to comply also in future with emission legislation in Europe and the United States.
Technical Paper

Diesel Particulate Measurement with Partial Flow Sampling: Systems A New Probe and Tunnel Design that Correlates with Full Flow Tunnels

2002-03-04
2002-01-0054
Partial flow sampling methods in emissions testing are interesting and preferred because of their lower cost, smaller size and applicability to engines of all sizes. However the agreement of the results obtained with instruments based on this method to those obtained with the traditional, large tunnel full flow sampling systems needs to be achieved, and the factors of construction that influence this agreement must be understood. These issues have received more attention lately in connection with ISO and WHDC standardization efforts underway to achieve a world-wide harmony in the sampling methods for heavy duty diesel engines, and with the introduction of similar Bag-minidiluter techniques into light duty SULEV gaseous pollutant measurement. This paper presents the theory and practice of a partial flow probe and tunnel design that addresses and minimizes the undesirable effects of the necessary differences between the two sampling methods.
Technical Paper

Can the Technology for Heavy Duty Diesel Engines be Common for Future Emission Regulations in USA, Japan and Europe?

2003-03-03
2003-01-0344
Exhaust emission legislation world-wide have a common trend towards very low limits, measured for compliance in transient cycles specific for the United States, Japan and Europe. The emission development strategy is focussing on lowest engine-out emissions to require a minimum of exhaust gas aftertreatment. The base engine concept is described and test results, complying with Euro 4, are shown. The emission reduction development for future regulations requires exhaust gas aftertreatment, test results are shown for US 2007, JNLTR and Euro 5. With exhaust gas aftertreatment, discussed in the appendix, the engine development is faced with a big challenge to ensure the minimum exhaust gas temperature required for their proper function.
X