Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Systematic Development of Hybrid Systems for Commercial Vehicles

2011-10-06
2011-28-0064
The reduction of CO₂ emissions represents a major goal of governments worldwide. In developed countries, approximately 20% of the CO₂ emissions originate from transport, one third of this from commercial vehicles. CO₂ emission legislation is in place for passenger cars in a number of major markets. For commercial vehicles such legislation was also already partly published or is under discussion. Furthermore the commercial vehicles market is very cost sensitive. Thus the major share of fuel cost in the total cost of ownership of commercial vehicles was already in the past a major driver for the development of efficient drivetrain solutions. These aspects make the use of new powertrain technologies, specifically hybridization, mandatory for future commercial powertrains. While some technologies offer a greater potential for CO₂ reduction than others, they might not represent the overall optimum with regard to the total cost of ownership.
Journal Article

Experimental and Numerical Investigation of Vehicle Drive and Thermal Soak Conditions in a Simplified Engine Bay

2017-03-28
2017-01-0147
Driven by the demand to continuously reduce the development time of new vehicles, it is of critical importance to robustly develop design and packaging concepts early within a new vehicle program using CAE methods. As the underhood and underbody package is constantly getting tighter and the engine power increases, the development of a sophisticated heat protection concept requires much more attention. For many years, heat protection CAE is an integral part of the vehicle development at Ford. However, due to challenges related to transient analysis, e.g. high numerical effort, simulation of transient buoyancy driven airflow (thermal soak), and dependency on high quality thermal material properties, heat protection CAE was primarily focused on steady state vehicle operating conditions.
X