Refine Your Search

Topic

Author

Search Results

Technical Paper

Pass-By Noise Prediction for Trucks Based on Powertrain Test-Cell Measurements

2001-04-30
2001-01-1564
The paper outlines and discusses the possibilities of a new instrumentation tool for the analysis of engine and gearbox noise radiation and the prediction of pass-by noise from powertrain test cell measurements. Based on a 32 channel data acquisition board, the system is intended to be quick and easy to apply in order to support engineers during their daily work in the test cell. The pass-by prediction is a purely experimental approach with test cell recordings being weighted by measured transfer functions (from the powertrain compartment to the pass-by point).
Technical Paper

Research Results and Progress in LeaNOx II -A Co-operation for Lean NOx Abatement

2000-10-16
2000-01-2909
In a consortium of European industrial partners and research institutes, a combination of industrial development and scientific research was organised. The objective was to improve the catalytic NOx conversion for lean burn cars and heavy-duty trucks, taking into account boundary conditions for the fuel consumption. The project lasted for three years. During this period parallel research was conducted in research areas ranging from basic research based on a theoretical approach to full scale emission system development. NOx storage catalysts became a central part of the project. Catalysts were evaluated with respect to resistance towards sulphur poisoning. It was concluded that very low sulphur fuel is a necessity for efficient use of NOx trap technology. Additionally, attempts were made to develop methods for reactivating poisoned catalysts. Methods for short distance mixing were developed for the addition of reducing agent.
Technical Paper

Rate of Heat Release Prediction for Direct Injection Diesel Engines Based on Purely Mixing Controlled Combustion

1999-03-01
1999-01-0186
The subject of this paper is the discussion of a non-dimensional combustion model that relies on the concept of mixing controlled combustion (MCC Heat Release Rate) avoiding the detailed description of the individual mixture formation and fuel oxidation processes. For diffusion combustion in today's direct injection diesel engines it can be shown that the rate of heat release (ROHR) is controlled mainly by two items, i.e. the instantaneous fuel mass present in the cylinder charge and the local density of turbulent kinetic energy. Both items can be derived from the injection process, the instantaneous fuel mass being the difference of fuel injected minus fuel burnt and the turbulent kinetic energy being produced mainly by the momentum of the fuel sprays. Following this strategy, the injection process is now understood as the most important controlling factor for the heat release rate.
Technical Paper

AVL Spectros - a Concept for Lightweight Modular Engine Design

2000-03-06
2000-01-0672
The AVL Spectros engine is a version of a potential engine family concept and an example of lightweight and modular design. The model shown and described in detail is a powerful V8 spark-ignited engine developed for the sporty limousine called I.DE.A One. The design objectives were high power density, compact overall dimensions and enhanced efficiency. These objectives have been achieved by means of downsizing, lightweight design, direct injection with exhaust gas turbo-charging and modular heat management system. One of the design targets was to match the design of the engine compartment with the outer appearance of the I.DE.A One vehicle. This was achieved by the integration of all tubes and cables in modules and the conscious avoidance of covers. The starter-alternator concept allows almost all secondary systems to be powered electrically and thus to omit any auxiliary belt drives.
Technical Paper

Vehicle Driveability Assessment using Neural Networks for Development, Calibration and Quality Tests

2000-03-06
2000-01-0702
Actual automotive themes in the beginning century are globalization and platform concepts. Platforms reduce manpower for basic power train development and enable a higher vehicle quality by sharing development cost to many models. New drive train generations with direct injected diesel and gasoline engines, variable valve train systems and hybrid drives require complex electronic control systems with many control parameters, which must be calibrated for each platform model to fulfill the targets for emissions, diagnostics and driveability. Calibration becomes a critical procedure in vehicle development. A negative effect of the platform is the reduced possibility to give a model or an OEM a brand specific driveability character, traditionally an important sales - promoting factor. The paper describes a tool for the objective real time assessment of vehicle driveability and vehicle character, using a new subjective - objective approach.
Technical Paper

Objective Evaluation of Vehicle Driveability

1998-02-23
980204
Vehicle driveability evolves more and more as a key decisive factor for marketability and competitiveness of passenger cars, since the final decision of customers to buy a car is usually taken after a more or less intensive test drive. Car manufacturers currently evaluate vehicle driveability with subjective assessments and by having their experienced test drivers fill out form sheets. These assessments are time and cost intensive, limited in repeatability and not objective. The real customer requirements cannot be recognized in detail with this method. This paper describes a completely new approach for an objective and real time evaluation of relevant driveability criteria, for use in a vehicle and on a high dynamic test bed. The vehicle application enables an objective comparison between vehicles and an application as a development tool in many development and calibration phases, where ever fast and objective driveability results are required.
Technical Paper

Modular and Swappable 48V Battery Systems for Emerging Markets

2019-01-09
2019-26-0032
Electrification globally shows promise in reducing greenhouse and noxious emissions. Although there is immense potential in such technologies penetrating across vehicle segments in the Indian market, the key lies in offering scalable, cost effective battery solutions suiting the diverse product and customer needs. This paper describes the development and possible applications of a low voltage battery system that fulfills the current needs on the Indian market. Based on real-world driving profiles the energy and power output required for the target platform are determined. Keeping in mind the Indian operating conditions, safety requirements, driving behavior, charging infrastructure, operational costs, supplier network and serviceability, technical requirements for such systems are described. Also, benchmarking data of current battery systems help to optimize the mechanical, thermal, and electrical layouts.
Technical Paper

Powertrain Solutions for Electrified Trucks and Buses

2017-05-10
2017-01-1937
Local air pollution, noise emissions as well as global CO2 reduction and public pressure drive the need for zero emission transport solutions in urban areas. OEMs are currently developing battery electric vehicles with the focus to provide emission free urban transportation combined with lowest total cost of ownership and consequently a positive business case for the end customers. Thereby the main challenges are electric range, product cost, system weight, vehicle packaging and durability. Hence they are the main drivers in current developments. In this paper AVL describes two of its truck and bus solutions - a modular battery concept as well as a concept for an integrated electric axle. Based on the vehicle requirements concept designs for both systems are presented.
Technical Paper

Impact of GHG-Phase II and Ultra Low NOx on the Base Powertrain

2017-05-10
2017-01-1925
With the implementation of EURO VI and similar emission legislation, the industry assumed the pace and stringency of new legislation would be reduced in the future. The latest announcements of proposed and implemented legislation steps show that future legislation will be even more stringent. The currently leading announced legislation, which concerns a large number of global manufacturers, is the legislation from the United States (US) Environmental Protection Agency (EPA) and the California Air Resources Board (CARB). Both announced new legislation for CO2, Greenhouse Gas (GHG) Phase II. CARB is also planning additional Ultra Low NOx regulations. Both regulations are significant and will require a number of technologies to be used in order to achieve the challenging limits. AVL published some engine related measures to address these legislation steps.
Technical Paper

Current Findings in Measurement Technology and Measurement Methodology for RDE and Fuel Consumption for Two-Wheeler-Applications

2017-11-05
2017-32-0041
Real world operating scenarios have a major influence on emissions and fuel consumption. To reduce climate-relevant and environmentally harmful gaseous emissions and the exploitation of fossil resources, deep understanding concerning the real drive behavior of mobile sources is needed because emissions and fuel consumption of e.g. passenger cars, operated in real world conditions, considerably differ from the officially published values which are valid for specific test cycles only [1]. Due to legislative regulations by the European Commission a methodology to measure real drive emissions RDE is well approved for heavy duty vehicles and automotive applications but may not be adapted similar to two-wheeler-applications. This is due to several issues when using the state of the art portable emission measurement system PEMS that will be discussed.
Technical Paper

Results, Assessment and Legislative Relevance of RDE and Fuel Consumption Measurements of Two-Wheeler-Applications

2017-11-05
2017-32-0042
The reduction of environmentally harmful gases and the ambitions to reduce the exploitation of fossil resources lead to stricter legislation for all mobile sources. Legislative development significantly affected improvements in emissions and fuel consumptions over the last years, mainly measured under laboratory conditions. But real world operating scenarios have a major influence on emissions and it is already well known that these values considerably differ from officially published figures [1]. There are regulated emissions by the European Commission by means of real driving scenarios for passenger cars. A methodology to measure real drive emissions RDE is therefore well approved for automotive applications but was not adapted for two-wheeler-applications yet [2]. Hence measurements have been performed on-road and on chassis dynamometer for motorcycles with the state of the art RDE measurement equipment to be prepared for possible future legislation.
Technical Paper

Single Cylinder 25kW Range Extender as Alternative to a Rotary Engine Maintaining High Compactness and NVH Performance

2013-10-15
2013-32-9132
Due to the restricted capacity of today's battery systems and therefore limited operating range of electric vehicles (EV), several solutions for recharging the energy storage during driving already have been published and still are the subject of extensive development programs. One example is the Range Extender (RE), which is a combination of an internal combustion engine (ICE) with a generator unit, which serves the purpose of a power back-up in case of a battery with low state of charge (SOC), without any direct connection to the drivetrain. For this kind of RE-application, different boundary conditions are very important. Especially in EVs topics like packaging space and NVH behavior play a main role. To fulfill these important characteristics, AVL has developed a Wankel-RE unit in which the generator is driven directly from the eccentric shaft of the rotary-piston ICE.
Technical Paper

Minimization of Risks and Difficulties from DESIGN to MASS PRODUCTION for Powertrain Components and Modules

2011-04-12
2011-01-0524
One main general goal during product development in the passenger car industry as well as in the commercial vehicle industry is to reduce time to market. The customer wants to get the newest product and is not accepting the risk of any product call backs. This means the minimization of the risk of field claims for the manufacturer. The challenge to reach this goal is a capable volume production of each new product. To create a competitive, innovative product it is the task for design and simulation engineers in the development phase to design the product in view of function, efficiency, fatigue strength, optimized weight and optimized product costs. Additionally an agreement between design and industrial production planning is required. An early involvement of production engineers into the development of a product ensures design for manufacturing from the very beginning.
Technical Paper

Two-Cylinder Gasoline Engine Concept for Highly Integrated Range Extender and Hybrid Powertrain Applications

2010-09-28
2010-32-0130
The demand for improved fuel economy and the request for Zero Emission within cities require complex powertrains with an increasing level of electrification already in a short-termed timeframe until 2025. According to general expectations the demand for Mild-Hybrid powertrains will increase significantly within a broad range of implementation through all vehicle classes as well as on electric vehicles with integrated Range Extender (RE) mainly for use in urban areas. Whereas Mild Hybrid Vehicles basically use downsized combustion engines at current technology level, vehicles with a high level of powertrain electrification allow significantly different internal combustion engine (ICE) concepts. At AVL, various engine concepts have been investigated and evaluated with respect to the key criteria for a Range Extender application. A Wankel rotary engine concept as well as an inline 2 cylinder gasoline engine turned out to be most promising.
Journal Article

Computational Study of the Aerodynamics of a Realistic Car Model by Means of RANS and Hybrid RANS/LES Approaches

2014-04-01
2014-01-0594
The aerodynamic properties of a BMW car model, representing a 40%-scaled model of a relevant car configuration, are studied computationally by means of the Unsteady RANS (Reynolds-Averaged Navier-Stokes) and Hybrid RANS/LES (Large-Eddy Simulation) approaches. The reference database (geometry, operating parameters and surface pressure distribution) are adopted from an experimental investigation carried out in the wind tunnel of the BMW Group in Munich (Schrefl, 2008). The present computational study focuses on validation of some recently developed turbulence models for unsteady flow computations in conjunction with the universal wall treatment combining integration up to the wall and high Reynolds number wall functions in such complex flow situations. The turbulence model adopted in both Unsteady RANS and PANS (Partially-Averaged Navier Stokes) frameworks is the four-equation ζ − f formulation of Hanjalic et al. (2004) based on the Elliptic Relaxation Concept (Durbin, 1991).
Journal Article

Development of the Combustion System for a Flexible Fuel Turbocharged Direct Injection Engine

2010-04-12
2010-01-0585
Gasoline turbocharged direct injection (GTDI) engines, such as EcoBoost™ from Ford, are becoming established as a high value technology solution to improve passenger car and light truck fuel economy. Due to their high specific performance and excellent low-speed torque, improved fuel economy can be realized due to downsizing and downspeeding without sacrificing performance and driveability while meeting the most stringent future emissions standards with an inexpensive three-way catalyst. A logical and synergistic extension of the EcoBoost™ strategy is the use of E85 (approximately 85% ethanol and 15% gasoline) for knock mitigation. Direct injection of E85 is very effective in suppressing knock due to ethanol's high heat of vaporization - which increases the charge cooling benefit of direct injection - and inherently high octane rating. As a result, higher boost levels can be achieved while maintaining optimal combustion phasing giving high thermal efficiency.
Technical Paper

Systematic Development of Hybrid Systems for Commercial Vehicles

2011-10-06
2011-28-0064
The reduction of CO₂ emissions represents a major goal of governments worldwide. In developed countries, approximately 20% of the CO₂ emissions originate from transport, one third of this from commercial vehicles. CO₂ emission legislation is in place for passenger cars in a number of major markets. For commercial vehicles such legislation was also already partly published or is under discussion. Furthermore the commercial vehicles market is very cost sensitive. Thus the major share of fuel cost in the total cost of ownership of commercial vehicles was already in the past a major driver for the development of efficient drivetrain solutions. These aspects make the use of new powertrain technologies, specifically hybridization, mandatory for future commercial powertrains. While some technologies offer a greater potential for CO₂ reduction than others, they might not represent the overall optimum with regard to the total cost of ownership.
Technical Paper

Combustion Analysis for In - Vehicle Application

2013-01-09
2013-26-0115
Traditional power train development work is concentrated mainly on test bed and on chassis dyno. Though we can simulate a lot of real world conditions on testbed and chassis dyno today, on road application work willis gaining more attention. This means that strategies and tools for invehicle testing under real world conditions are becoming more important. Emission, performance, fuel economy, combustion noise and driving comfort are linked to combustion quality, i.e. quality of fuel mixture preparation and flame propagation. The known testing and research equipment is only partly or not at all applicable for in-vehicle development work. New tools for on the road testing are required. Following, a general view on in-vehicle power train testing will be given. Additionally, new ways to investigate cylinder and cycle specific soot formation in GDI engines with fiber optic tools will be presented.
X