Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

The Simulation of ABS Stopping Distance

Recently, customers have been demanding increased safety features in cars. Meanwhile, auto magazines now seek to publish the stopping distance. Further, the car development period has become shorter. For all these reasons, a precise estimation of the ABS stopping distance has grown important. A few steps that can be taken to improve accurate simulations of the ABS stopping distance are as follows: 1 Development of the tire hysteresis concept, its confirmation by test results, and then its application. 2 Free diagram development of the wheel combining ideal braking force, real braking force, and specific tire quality. 3 Modeling of HCU. 4 Application of ABS and EBD logic. 5 Application of booster characteristic to the section of early braking.
Technical Paper

Solution for the Torque Steer Problem of a Front-wheel Drive Car with a High-torque Engine in Vehicle Development Stages

This paper describes a torque steer reduction process for a front-wheel drive car with a high torque engine at the initial stage of vehicle development. Literature reviews for the reduction process and vehicle integration tradeoffs among chassis components, driveline components, and loading condition are included. Drive shaft angle and its stiffness, differential gear stiffness, and power train mount, and vehicle weight distribution are mainly considered. In addition, wheel alignment data such as kingpin offset, kingpin inclination, camber angle, ride height, and dynamic tire radius are also discussed to solve the torque steer problem. This paper introduces an example solution to improve the torque steer during vehicle development stage. In that case, the vehicle parameters should be considered the factors to achieve many requirements. In spite of that restriction of alteration, the result of improvement became better than that of its competitor.
Technical Paper

Influence of Tire Size and Shape on Sound Radiation from a Tire in the Mid-Frequency Region

In this research, the influence of tire size and shape on sound radiation in the mid-frequency region was studied. First, the relationship between the structural wave propagation characteristics of a tire excited at one point and its sound radiation was identified by using FE and BE analyses. Then, by using that relationship, the effect of modifying a tire's aspect ratio, width and wheel diameter on its sound radiation between 300 Hz and 800 Hz was investigated. Finally, an optimization of the sound radiation was performed by modification of the tire structure and shape. It was found that most of a tire's structural vibration does not contribute to sound radiation. In particular, the effective radiation was found to occur at the frequencies where low wave number components of the longitudinal wave and the flexural wave first appear.
Technical Paper

The Development and Experiment of the Variable Rack Stroke (VRS) System

The turning radius is designed with considering sufficient gap between front tires including snow chains and front parts around wheels (e.g. side member, wheel guard, and suspension control arms). Therefore, when we don't use the snow chain needed only in winter season, there remains gap between tires and elements around front wheels. Since there is much available space between the front tire and other parts around wheel without the snow chains, we strived to increase the steering angle of the front wheels for the smaller turning radius of the vehicle. In this paper, with the idea, we strived to develop the VRS (Variable Rack Stroke) system which is invented by Hyundai Motor Company for the first time around world and is capable of varying the minimum tuning radius of the vehicle.
Technical Paper

Reduction of Road Noise by the Investigation of Contributions of Vehicle Components

The mobility technique is used to analyze the transfer functions of road noise between the suspension and the body structure. In the previous analyses, the suspension system and the body structure are altogether modeled as subsystems in the noise transfer path. In this paper, the mobility between the suspension and the body structure is analyzed by the dynamic stiffness at the connecting points. The measured drive point acceleration FRF at the connecting point in the transfer path was used to estimate the contributions of subsystems. The vibration modes of tire, the acoustic noise of tire's interior cavity, the vibration modes of the car's interior room, and the vibrations of body structure and the chassis are also considered to analyze the coupling effects of the road noise. Analyzing the measured results, direction for modification of car components is suggested.
Technical Paper

Development of Durability Improved Tire Repair Sealant and Intergrated Inflator

This study provides a tire puncture sealant including NR latex and acrylic emersion, which has a reduced viscosity at -40°C, and is also excellent storage stability at -40°C to 70°C, initial sealing performance. Also, this study provides device for sealing inflatable objects. 'One- Piece Tire Repair Kit' can reduce weight and operation steps.
Journal Article

Analysis of Influence of Tire F and M on Improvement of Vehicle On-Center Steering

In this research, the influence of tire force and moment (F&M) characteristics on vehicle on-center steering performance was analyzed and then how to improve vehicle on-center performance was studied through controlling tire structure design parameter, tread pattern shape and tread grip characteristics. First, the relationship between vehicle on-center steering performance and tire F&M characteristics was identified by comparing vehicle steering measurements and tire F&M measurements. It was found that key factor of tire related with on-center performance is aligning torque at lower slip angles. As the aligning torque at slip angle 1° increases, on-center feel is improved. Second, the influence of tire design parameters on tire aligning torque was studied through F&M finite element (FE) analysis and measurement. It was found that the aligning torque at lower slip angle increases as stiffness of the tread and sidewall decreases.
Technical Paper

Prediction of Suspension Fundamental Mode Frequency with Extraction of Dynamic Properties of Automotive Shock Absorbers and Tire

The automotive shock absorber has various functions in car performance. Particularly, it is a dominant tuning parameter to get good primary and secondary ride characteristics within 1-35Hz ranges in car development. Thus, understanding of characteristics of shock absorber in this frequency range is indispensable to both test and analysis engineers for an effective and systematic approach. In this study, tire is also investigated from the same point of view. Frequency dependent stiffness and damping coefficient are extracted by discrete sine swept test under constant velocity of 25, 50, 100mm/sec which represent typical road surface conditions[1]. The responses are analyzed on frequency domain and the basic theoretical background for this approach is introduced.
Technical Paper

Estimation of Side Slip Angle Interacting Multiple Bicycle Models Approach for Vehicle Stability Control

This paper presents an Interacting Multiple Model (IMM) based side slip angle estimation method to estimate side slip angle under various road conditions for vehicle stability control. Knowledge of the side slip angle is essential enhancing vehicle handling and stability. For the estimation of the side slip angles in previous researches, prior knowledge of tire parameters and road conditions have been employed, and sometimes additional sensors have been needed. These prior knowledge and additional sensors, however, necessitates many efforts and make an application of the estimation algorithm difficult. In this paper, side slip angle has been estimated using on-board vehicle sensors such as yaw rate and lateral acceleration sensors. The proposed estimation algorithm integrates the estimates from multiple Kalman filters based on the multiple models with different parameter set.
Journal Article

A Tire Slip-Angle based Speed Control Driver Model for Analysis of Vehicle-Driver Systems at Limit Handling

This paper presents a tire slip-angle based speed control race driver model. In developing a chassis control system for enhancement of high-speed driving performance, analysis of the vehicle-driver interaction at limit handling is one of the main research issues. Thus, a driver model which represents driving characteristics in a racing situation is required to develop a chassis control system. Since a race driver drives a vehicle as fast as possible on a given racing line without losing control, the proposed driver model is developed to ensure a lateral stability. In racing situation, one of the reasons which cause the lateral instabilities is an excessive corner-entry speed. The lateral instability in that moment is hard to handle with only a steering control. To guarantee the lateral stability of the vehicle while maximizing a cornering speed, a desired speed is determined to retain a tire slip-angle that maximizes lateral tire forces without front tire saturation.
Technical Paper

Steering Wheel Torque Control of Steer-by-Wire System for Steering Feel

This paper proposes a reference steering wheel torque map and a torque tracking algorithm via steer-by-wire to achieve the targeted steering feel. The reference steering wheel torque map is designed using the measurement data of rack force and steering characteristic of a target performance of the vehicle at transition steering test. Since the target performance of the vehicle is only tested in nominal road condition, various road conditions such as disturbances and tire-road friction are not considered. Hence, the measurement data of the rack force that reflects the road conditions in the reference steering wheel torque map have been used. The rack force is the net force which consists of tire aligning moment, road friction force and normal force on the tire kingpin axis. A motor and a magnetorheological damper are used as actuators to generate the desired steering feel using the torque tracking algorithm.