Refine Your Search

Topic

Author

Affiliation

Search Results

Video

BMW i3 - A Battery Electric Vehicle...Right from the Beginning

2012-03-29
What are the requirements of customers in an urban environment? What will sustainable mobility look like in the future? This presentation gives an overview of the integrated approach used by BMW to develop the BMW i3 - a purpose-built battery electric vehicle. Very low driving resistances for such a vehicle concept enable the delivery of both impressive range and driving excitement. A small optional auxiliary power unit offers range security for unexpected situations and opens up BEVs to customers who are willing to buy a BEV but are still hesitant due to range anxiety. Additional electric vehicles sold to the formerly range anxious will create additional electric miles. Presenter Franz Storkenmaier, BMW Group
Technical Paper

The new generation of BMW child seat and occupant detection system SBE2

2000-06-12
2000-05-0274
A new generation of BMW child seat and occupant detection system SBE2 for a smart airbag system is described. The SBE2 system consists of two subsystems: OC (occupant classification) and FDS (field detection system). The OC system is a force-sensitive sensor array that measures a pressure profile. The FDS system detects child seat and occupant according to the change of electrical field generated by four capacitive plates. Combining the signals from both subsystems, the BMW SBE2 system can distinguish fully automatically between a child seat and a person.
Technical Paper

Solid Oxide Fuel Cell Auxiliary Power Unit - A Paradigm Shift in Electric Supply for Transportation

2000-11-01
2000-01-C070
Delphi Automotive Systems and BMW have been jointly developing Solid Oxide Fuel Cell (SOFC) technology for application in the transportation industry primarily as an on-board Auxiliary Power Unit (APU). In the first application of this joint program, the APU will be used to power an electric air conditioning system without the need for operating the vehicle engine. The SOFC-based APU technology has the potential to provide a paradigm shift in the supply of electric power for passenger cars. Furthermore, supplementing the conventional fuel with reformate in the internal combustion engine, extremely low emissions and high system efficiencies are possible. This is consistent with the increasing power demands in automobiles in the new era of more comfort and safety along with environmental friendliness.
Technical Paper

Real-Time Engine Models

2003-03-03
2003-01-1050
Engine management systems in modern motor vehicles are becoming increasingly extensive and complex. The functionality of the control units which are the central components of such systems is determined by the hardware and software. They are the result of a lengthy development and production process. Road testing of control units, together with testing them on the engine test bench, is very time consuming and costly. An alternative is to test control units away from their actual environment, in a virtual context. This involves operating the control unit on a Hardware-in-the-Loop test bench. The control unit's large number of individual and interlinked functions necessitates a structured, reproducible test procedure. These tests can, however, only be conducted once an engine prototype has been completed, as the parameters for the existing conventional models are determined from the data measured on the test bench.
Technical Paper

Technology from Highly Automated Driving to Improve Active Pedestrian Protection Systems

2017-03-28
2017-01-1409
Highly Automated Driving (HAD) opens up new middle-term perspectives in mobility and is currently one of the main goals in the development of future vehicles. The focus is the implementation of automated driving functions for structured environments, such as on the motorway. To achieve this goal, vehicles are equipped with additional technology. This technology should not only be used for a limited number of use cases. It should also be used to improve Active Safety Systems during normal non-automated driving. In the first approach we investigate the usage of machine learning for an autonomous emergency braking system (AEB) for the active pedestrian protection safety. The idea is to use knowledge of accidents directly for the function design. Future vehicles could be able to record detailed information about an accident. If enough data from critical situations recorded by vehicles is available, it is conceivable to use it to learn the function design.
Technical Paper

Motion Cueing Algorithm for a 9 DoF Driving Simulator: MPC with Linearized Actuator Constraints

2018-04-03
2018-01-0570
In times when automated driving is becoming increasingly relevant, dynamic simulators present an appropriate simulation environment to faithfully reproduce driving scenarios. A realistic replication of driving dynamics is an important criterion to immerse persons in the virtual environments provided by the simulator. Motion Cueing Algorithms (MCAs) compute the simulator’s control input, based on the motions of the simulated vehicle. The technical restrictions of the simulator’s actuators form the main limitation in the execution of these input commands. Typical dynamic simulators consist of a hexapod with six degrees of freedom (DoF) to reproduce the vehicle motion in all dimensions. Since its workspace dimensions are limited, significant improvements in motion capabilities can be achieved by expanding the simulator with redundant DoF by means of additional actuators.
Technical Paper

Conceptualization and Implementation of a Scalable Powertrain, Modular Energy Storage and an Alternative Cooling System on a Student Concept Vehicle

2018-04-03
2018-01-1185
The Deep Orange program immerses automotive engineering students into the world of an OEM as part of their 2-year graduate education. In support of developing the program’s seventh vehicle concept, the students studied the sponsoring brand essence, conducted market research, and made a heuristic assessment of competitor vehicles. The upfront research lead to the definition of target customers and setting vehicle level targets that were broken down into requirements to develop various vehicle sub-systems. The powertrain team was challenged to develop a scalable propulsion concept enabled by a common vehicle architecture that allowed future customers to select (at the point of purchase) among various levels of electrification best suiting their needs and personal desires. Four different configurations were identified and developed: all-electric, two plug-in hybrid electric configurations, and an internal combustion engine only.
Technical Paper

Injury Risk to Specific Body Regions of Pedestrians in Frontal Vehicle Crashes Modeled by Empirical, In-Depth Accident Data

2010-11-03
2010-22-0006
Evaluation of safety benefits is an essential task during design and development of pedestrian protection systems. Comparative evaluation of different safety concepts is facilitated by a common metric taking into account the expected human benefits. Translation of physical characteristics of a collision, such as impact speed, into human benefits requires reliable and preferably evidence-based injury models. To this end, the dependence of injury severity of body regions on explanatory factors is quantified here using the US Pedestrian Crash Data Study (PCDS) for pedestrians in frontal vehicle collisions. The explanatory and causal factors include vehicle component characteristics, physiological and biomechanical variables, and crash parameters. Severe to serious injuries most often involve the head, thorax and lower extremities.
Technical Paper

Test Center for Aging Analysis and Characterization of Lithium-Ion Batteries for Automotive Applications

2011-04-12
2011-01-1374
A test center for aging analysis and characterization of Lithium-Ion batteries for automotive applications is optimized by means of a dedicated cell tester. The new power tester offers high current magnitude with fast rise time in order to generate arbitrary charge and discharge waveforms, which are identical to real power net signals in vehicles. Upcoming hybrid and electrical cars show fast current transients due to the implemented power electronics like inverter or DC/DC converter. The various test procedures consider single and coupled effects from current profile, state of charge and temperature. They are simultaneously applied on several cells in order to derive statistical significance. Comprehensive safely functions on both the hardware and the software level ensure proper operation of the complex system.
Technical Paper

Measuring Near Zero Automotive Exhaust Emissions - Zero Is a Very Small Precise Number

2010-04-12
2010-01-1301
In the environmentally conscious world we live in, auto manufacturers are under extreme pressure to reduce tailpipe emissions from cars and trucks. The manufacturers have responded by creating clean-burning engines and exhaust treatments that mainly produce CO2 and water vapor along with trace emissions of pollutants such as CO, THC, NOx, and CH4. The trace emissions are regulated by law, and testing must be performed to show that they are below a certain level for the vehicle to be classified as road legal. Modern engine and pollution control technology has moved so quickly toward zero pollutant emissions that the testing technology is no longer able to accurately measure the trace levels of pollutants. Negative emission values are often measured for some pollutants, as shown by results from eight laboratories independently testing the same SULEV automobile.
Technical Paper

The Impact of Hybrid-Electric Powertrains on Chassis Systems and Vehicle Dynamics

2009-04-20
2009-01-0442
While hybrid-electric powertrain features such as regenerative braking and electric driving can improve the fuel economy of a vehicle significantly, these features may also have a considerable impact on driving dynamics. That is why extra effort is necessary to ensure safety and comfort that customers usually expect from a conventional vehicle. The purpose of this paper is to initiate a discussion regarding different drivetrain concepts, necessary changes in chassis systems, and the impact on vehicle dynamics. To provide input to this essential discussion, braking and steering systems, as well as suspension design, are analyzed regarding their fit with hybrid systems. It is shown how an integration of hybrid technology and chassis systems benefits vehicle dynamics and why “by-wire” technology is a key enabler for safe and comfortable hybrid-electric vehicles.
Technical Paper

A Co-Simulation Based Approach for the Validation of Integrated Safety Systems

2013-04-08
2013-01-0201
With the huge improvements made during the last years in the area of integrated safety systems, they are one of the main contributors to the massively rising complexity within automotive systems. However, this enormous complexity stimulates the demand for methodologies supporting the efficient development of such systems, both in terms of cost and development time. Within this work, we propose a co-simulation-based approach for the validation of integrated safety systems. Based on data measurements gained from a test bed, models for the sensors and the distributed safety system are established. They are integrated into a co-simulation environment containing models of the ambience, driving dynamics, and the crash-behavior of the vehicle. Hence, the complete heterogeneous system including all relevant effects and dependencies is modeled within the co-simulation.
Technical Paper

System Level Design Simulation to Predict Passive Safety Performance for CFRP Automotive Structures

2013-04-08
2013-01-0663
Despite increasingly stringent crash requirements, the body structures of future mainstream production cars need to get lighter. Carbon fiber reinforced polymer (CFRP) composites with a density 1/5th of steel and very high specific energy absorption represent a material technology where substantial mass can be saved when compared to traditional steel applications. BMW have addressed the demanding challenges of producing several hundred composite Body-in-White (BIW) assemblies a day and are committed to significant adoption of composites in future vehicle platforms, as demonstrated in the upcoming i3 and i8 models. A next step to further integrate composites into passenger cars is for primary structural members, which also perform critical roles in passive safety by absorbing large amounts of energy during a crash event.
Technical Paper

Experimental Investigation of Unsteady Vehicle Aerodynamics under Time-Dependent Flow Conditions - Part2

2011-04-12
2011-01-0164
Unsteady aerodynamic flow phenomena are investigated in a wind tunnel by oscillating a realistic 50% scale model around the vertical axis. Thus the model is exposed to time-dependent flow conditions at realistic Reynolds and Strouhal numbers. Using this setup unsteady aerodynamic loads are observed to differ significantly from quasi steady loads. In particular, the unsteady yaw moment exceeds the quasi steady approximation significantly. On the other hand, side force and roll moment are over predicted by quasi steady approximation but exhibit a significant time delay. Part 2 of this study proves that a delayed and enhanced response of the surface pressures at the rear side of the vehicle is responsible for the differences between unsteady and quasi steady loads. The pressure changes at the vehicle front, however, are shown to have similar amplitudes and almost no phase shift compared to quasi steady flow conditions.
Technical Paper

Experimental Investigation of Unsteady Vehicle Aerodynamics under Time-Dependent Flow Conditions - Part 1

2011-04-12
2011-01-0177
Unsteady aerodynamic flow phenomena are investigated in the wind tunnel by oscillating a realistic 50% scale model around its vertical axis. Thus the model is exposed to time-dependent flow conditions at realistic Reynolds and Strouhal numbers. Using this setup unsteady aerodynamic loads are observed to differ significantly from quasi-steady loads. In particular, the unsteady yaw moment exceeds the quasi-steady approximation by 80%. On the other hand, side force and roll moment are over predicted by quasi-steady approximation but exhibit a significant time delay. Using hotwire anemometry, a delayed reaction of the wake flow of Δt/T = 0.15 is observed, which is thought to be the principal cause for the differences between unsteady and quasi-steady aerodynamic loads. A schematic mechanism explaining these differences due to the delayed reaction of the wake flow is proposed.
Technical Paper

Approach to a Design of Experiments for Sound Quality Evaluations of Car Interior Adjusting Noises

2009-05-19
2009-01-2184
A widely common principle of sound quality engineering is the development of objective measures determining human perception. Beside stationary sound parts, auditory events that are based on time-variant attributes have a traceable influence on human perception, particularly in the field of product sound quality. In this paper the significance and identification of the relevant sound quality parameters for power seat adjusters are investigated with a specific design of experiments (DoE). This methodology was used to advance the efficiency of subjective tests. The necessity of an efficient design is given through a relatively high number of variable parameters and, furthermore, through the demands of a qualitative experiment with limited effort for each subject in the listening tests. Instead of investigating randomly picked sounds this approach concentrates on a systematic scanning of the parameter space.
Technical Paper

A CFD/SEA Approach for Prediction of Vehicle Interior Noise due to Wind Noise

2009-05-19
2009-01-2203
For most car manufacturers, aerodynamic noise is becoming the dominant high frequency noise source (> 500 Hz) at highway speeds. Design optimization and early detection of issues related to aeroacoustics remain mainly an experimental art implying high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the development of a reliable numerical prediction capability. The goal of this paper is to present a computational approach developed to predict the greenhouse windnoise contribution to the interior noise heard by the vehicle passengers. This method is based on coupling an unsteady Computational Fluid Dynamics (CFD) solver for the windnoise excitation to a Statistical Energy Analysis (SEA) solver for the structural acoustic behavior.
Technical Paper

Contemporary Crash Analysis as a Building Block in Holistic Multidisciplinary Structural Analysis

2008-04-14
2008-01-1127
The trend in the previous years showed that an ideal product is not obtained as a sum of development results of several separated disciplines but rather as a result of a holistic multidisciplinary CAE approach. In the course of the whole component development process it is necessary to consider all functions of an individual component equivalent to their importance in the system as a whole, in order to achieve both a technical and a financial optimum. The predictability and the accuracy of an individual computational method have to be regarded against the background of the entire simulation process. A continuative CAE-standard and a harmonious interaction between the different computational disciplines promise more success than focusing specifically on individual topics and thereby neglecting the “bigger picture”. This awareness provided the basis for a decision to change the entire crash simulation software to ABAQUS.
Technical Paper

Experimental Analysis of the Underbody Pressure Distribution of a Series Vehicle on the Road and in the Wind Tunnel

2008-04-14
2008-01-0802
Underbody aerodynamics has become increasingly important over the last three decades because of its vital contribution to improving a vehicle's overall performance. This was the motivation for the research conducted by BMW Aerodynamics, concerning the determination of the overall pressure distribution on the underbody of a series-production vehicle. Static pressure measurements have been taken under various test conditions. Real on-road tests were carried out as well as wind tunnel experiments under application of different road simulation techniques. The analyzed vehicle configurations include wheel rim-tire and body modifications. The results presented include surface pressure data, drag and lift coefficients, ride heights, pitch and roll angles. The acquired data is used to examine the underbody flow topology and determine how the diverse attempts to represent the real on-road conditions affect its pressure distribution.
Technical Paper

Virtual Validation of Assembly Processes with Digital Human Models — Optimizing the Human-Computer Interaction

2008-06-17
2008-01-1901
Today digital 3D human models are widely used to support the development of future products and in planning and designing production systems. However, these virtual models are generally not sufficiently intuitive and configuring accurate and real body postures is very time consuming. Furthermore, additionally using a human model to virtually examine manual assembly operations of a vehicle is currently synonymous with increased user inputs. In most cases, the user is required to have in-depth expertise in the deployed simulation system. In view of the problems described, in terms of human-computer interaction, it is essential to research and identify the requirements for simulation with digital human models. To this end, experienced staff members gathered the requirements which were then evaluated and weighted by the potential user community. Weaknesses of the simulation software will also be detected, permitting optimisation recommendations to be identified.
X