Refine Your Search



Search Results

Technical Paper

Evaluation of the Recyclability of Vehicles During the Product Development Phases

In a voluntary agreement, the German automobile industry has undertaken to recover 95 percent by weight of End–of–Life Vehicles in the year 2015. In addition, the European draft directive on „End–of–Life Vehicles” recycling calls for evidence that at least than 85 percent by weight of the materials are suitable for material recycling. It is therefore essential while new vehicles are being developed to be in a position to assess their suitability for dismantling and recycling. An automobile consists of a large number of individual components, each of which must be examined separately before a well–founded statement regarding the overall recycling level can be made. For this purpose the BMW Group has developed its own dismantling software which permits virtual dismantling analysis even during a vehicle's development phase and thus enables suitability for recycling to be determined at the earliest possible time.
Technical Paper

BMW's Energy Strategy - Promoting the Technical and Political Implementation

BMW can look back on 20 years of research activities on hydrogen propulsion systems. Hydrogen fuel is the only means of offering pure driving pleasure on the basis of a sustainable energy loop. As the hydrogen era is still quite a while away the BMW Energy Strategy „Via Natural Gas to Hydrogen” has been developed. The first step was to build series-production compressed natural gas (CNG) cars back in 1995. By switching to liquefied natural gas (LNG) not only is the cruising range tripled but technologically the final stepping-stone is reached in preparing the way for liquefied hydrogen. BMW's automotive and drive technology for hydrogen is now available and ready to move out of the laboratory on to the road. At Munich Airport a BMW „Clean Energy” car is already providing shuttle services. Its fuel is supplied by the world's first public filling station for liquefied hydrogen.
Technical Paper

Advanced material technologies meeting the challenges of automotive engineering

Advanced material technologies play a key role in automotive engineering. The main objective of the development of advanced material technologies for automotive applications is to promote the desired properties of a vehicle. It is characteristic of most materials in modern cars that they have been developed especially for automotive requirements. Requirements are not only set by the customer who expects the maximum in performance, comfort, reliability, and safety from a modern car. Existing legal regulations also have to be met, e.g., in the areas of environmental compatibility, resource preservation, and minimization of emissions. To achieve goals like weight reduction or increased engine performance permanent material developments are essential. In this paper, numerous examples chosen from body, suspension, and powertrain components show clearly how low weight technologies, better comfort, and high level of recyclability can be achieved by advanced material solutions.
Technical Paper

Technology from Highly Automated Driving to Improve Active Pedestrian Protection Systems

Highly Automated Driving (HAD) opens up new middle-term perspectives in mobility and is currently one of the main goals in the development of future vehicles. The focus is the implementation of automated driving functions for structured environments, such as on the motorway. To achieve this goal, vehicles are equipped with additional technology. This technology should not only be used for a limited number of use cases. It should also be used to improve Active Safety Systems during normal non-automated driving. In the first approach we investigate the usage of machine learning for an autonomous emergency braking system (AEB) for the active pedestrian protection safety. The idea is to use knowledge of accidents directly for the function design. Future vehicles could be able to record detailed information about an accident. If enough data from critical situations recorded by vehicles is available, it is conceivable to use it to learn the function design.
Technical Paper

A Numerical Investigation of Dampening Dynamic Profiles for the Application in Transient Vehicle Thermal Management Simulations

As computational methodologies become more integrated into industrial vehicle pre-development processes the potential for high transient vehicle thermal simulations is evident. This can also been seen in conjunction with the strong rise in computing power, which ultimately has supported many automotive manufactures in attempting non-steady simulation conditions. The following investigation aims at exploring an efficient means of utilizing the new rise in computing resources by resolving high time-dependent boundary conditions through a series of averaging methodologies. Through understanding the sensitivities associated with dynamic component temperature changes, optimised boundary conditions can be implemented to dampen irrelevant input frequencies whilst maintaining thermally critical velocity gradients.
Technical Paper

A Combined Computational-Experimental Approach for Modelling of Coupled Vibro-Acoustic Problems

Over the past 30 years, the computer-aided engineering (CAE) tools have been applied extensively in the automotive industry. In order to accelerate time-to-market while coping with legal limits that have become increasingly restrictive over the last decades, CAE has become an indispensable tool covering all major fields in a modern automotive product design process. However, when tackling complex real-life engineering problems, the computational models might become rather involved and thus less efficient. Therefore, the overall trend in the automotive industry is currently heading towards combined approaches, which allow the best of the both worlds, namely the experimental measurement and numerical simulation, to be merged into one integrated scheme. In this paper, the so-called patch transfer function (PTF) approach is adopted to solve coupled vibro-acoustic problems. In the PTF scheme, the interfaces between fluid and structure are discretised in terms of patches.
Technical Paper

Conceptualization and Implementation of a Scalable Powertrain, Modular Energy Storage and an Alternative Cooling System on a Student Concept Vehicle

The Deep Orange program immerses automotive engineering students into the world of an OEM as part of their 2-year graduate education. In support of developing the program’s seventh vehicle concept, the students studied the sponsoring brand essence, conducted market research, and made a heuristic assessment of competitor vehicles. The upfront research lead to the definition of target customers and setting vehicle level targets that were broken down into requirements to develop various vehicle sub-systems. The powertrain team was challenged to develop a scalable propulsion concept enabled by a common vehicle architecture that allowed future customers to select (at the point of purchase) among various levels of electrification best suiting their needs and personal desires. Four different configurations were identified and developed: all-electric, two plug-in hybrid electric configurations, and an internal combustion engine only.
Technical Paper

Motion Cueing Algorithm for a 9 DoF Driving Simulator: MPC with Linearized Actuator Constraints

In times when automated driving is becoming increasingly relevant, dynamic simulators present an appropriate simulation environment to faithfully reproduce driving scenarios. A realistic replication of driving dynamics is an important criterion to immerse persons in the virtual environments provided by the simulator. Motion Cueing Algorithms (MCAs) compute the simulator’s control input, based on the motions of the simulated vehicle. The technical restrictions of the simulator’s actuators form the main limitation in the execution of these input commands. Typical dynamic simulators consist of a hexapod with six degrees of freedom (DoF) to reproduce the vehicle motion in all dimensions. Since its workspace dimensions are limited, significant improvements in motion capabilities can be achieved by expanding the simulator with redundant DoF by means of additional actuators.
Technical Paper

Student Concept Vehicle: Development and Usability of an Innovative Holographic User Interface Concept and a Novel Parking Assistance System Concept

The Deep Orange program is a concept vehicle development program focused on providing hands-on experience in design, engineering, prototyping and production planning as part of students’ two-year MS graduate education. Throughout this project, the team was challenged to create innovative concepts during the ideation phase as part of building the running vehicle. This paper describes the usability studies performed on two of the vehicle concepts that require driver interaction. One concept is a human machine interface (HMI) that uses a holographic companion that can act as a concierge for all functions of the vehicle. After creating a prototype using existing technologies and developing a user interface controlled by hand gestures, a usability study was completed with older adults. The results suggest the input method was not intuitive. Participants demonstrated better performance with tasks using discrete hand motions in comparison to those that required continuous motions.

BMW i3 - A Battery Electric Vehicle...Right from the Beginning

What are the requirements of customers in an urban environment? What will sustainable mobility look like in the future? This presentation gives an overview of the integrated approach used by BMW to develop the BMW i3 - a purpose-built battery electric vehicle. Very low driving resistances for such a vehicle concept enable the delivery of both impressive range and driving excitement. A small optional auxiliary power unit offers range security for unexpected situations and opens up BEVs to customers who are willing to buy a BEV but are still hesitant due to range anxiety. Additional electric vehicles sold to the formerly range anxious will create additional electric miles. Presenter Franz Storkenmaier, BMW Group
Technical Paper

Test Center for Aging Analysis and Characterization of Lithium-Ion Batteries for Automotive Applications

A test center for aging analysis and characterization of Lithium-Ion batteries for automotive applications is optimized by means of a dedicated cell tester. The new power tester offers high current magnitude with fast rise time in order to generate arbitrary charge and discharge waveforms, which are identical to real power net signals in vehicles. Upcoming hybrid and electrical cars show fast current transients due to the implemented power electronics like inverter or DC/DC converter. The various test procedures consider single and coupled effects from current profile, state of charge and temperature. They are simultaneously applied on several cells in order to derive statistical significance. Comprehensive safely functions on both the hardware and the software level ensure proper operation of the complex system.
Journal Article

An Innovative Approach to Race Track Simulations for Vehicle Thermal Management

Within the pre-development phase of a vehicle validation process, the role of computational simulation is becoming increasingly prominent in efforts to ensure thermal safety. This gain in popularity has resulted from the cost and time advantages that simulation has compared to experimental testing. Additionally many of these early concepts cannot be validated through experimental means due to the lack of hardware, and must be evaluated via numerical methods. The Race Track Simulation (RTS) can be considered as the final frontier for vehicle thermal management techniques, and to date no coherent method has been published which provides an efficient means of numerically modeling the temperature behavior of components without the dependency on statistical experimental data.
Technical Paper

Measuring Near Zero Automotive Exhaust Emissions - Zero Is a Very Small Precise Number

In the environmentally conscious world we live in, auto manufacturers are under extreme pressure to reduce tailpipe emissions from cars and trucks. The manufacturers have responded by creating clean-burning engines and exhaust treatments that mainly produce CO2 and water vapor along with trace emissions of pollutants such as CO, THC, NOx, and CH4. The trace emissions are regulated by law, and testing must be performed to show that they are below a certain level for the vehicle to be classified as road legal. Modern engine and pollution control technology has moved so quickly toward zero pollutant emissions that the testing technology is no longer able to accurately measure the trace levels of pollutants. Negative emission values are often measured for some pollutants, as shown by results from eight laboratories independently testing the same SULEV automobile.
Technical Paper

A Co-Simulation Based Approach for the Validation of Integrated Safety Systems

With the huge improvements made during the last years in the area of integrated safety systems, they are one of the main contributors to the massively rising complexity within automotive systems. However, this enormous complexity stimulates the demand for methodologies supporting the efficient development of such systems, both in terms of cost and development time. Within this work, we propose a co-simulation-based approach for the validation of integrated safety systems. Based on data measurements gained from a test bed, models for the sensors and the distributed safety system are established. They are integrated into a co-simulation environment containing models of the ambience, driving dynamics, and the crash-behavior of the vehicle. Hence, the complete heterogeneous system including all relevant effects and dependencies is modeled within the co-simulation.
Technical Paper

Cycle Life Investigations on Different Li-Ion Cell Chemistries for PHEV Applications Based on Real Life Conditions

Plug-In Hybrid Electric Vehicles (PHEV) are becoming increasingly important as an intermediate step on the roadmap to Battery Electric Vehicles (BEV). Li-Ion is the most important battery technology for future hybrid and electrical vehicles. Cycle life of batteries for automotive applications is a major concern of design and development on vehicles with electrified powertrain. Cell manufacturers present various cell chemistries based on Li-Ion technology. For choosing cells with the best cycle life performance appropriate test methods and criteria must be obtained. Cells must be stressed with accelerated aging methods, which correlate with real life conditions. There is always a conflict between high accelerating factors for fast results on the one hand and best accordance with reality on the other hand. Investigations are done on three different Li-Ion cell types which are applicable in the use of PHEVs.
Technical Paper

Predicting Overall Seating Discomfort Based on Body Area Ratings

For car manufacturers, seating comfort is becoming more and more important in distinguishing themselves from their competitors. There is a simultaneous demand for shorter development times and more comfortable seats. Comfort in automobile seats is a multi-dimensional and complex problem. Many current sophisticated measuring tools were consulted, but it is unclear on which factors one should concentrate attention when measuring comfort. The goal of this paper is to find a model in order to predict the overall seating discomfort based on body area ratings. Besides micro climate, the pressure distribution appears to be the most objective measure comprising with the clearest association with the subjective ratings. Therefore an analysis with three different test series was designed, allowing the variation of pressure on the seat surface. In parallel the subjects were asked to judge the local and the overall sensation.
Technical Paper

Enhancing Navigation Systems with Quality Controlled Traffic Data

As the popularity of vehicle navigation systems rises, incorporating Real Time Traffic Information (RTTI) has been shown to enhance the systems' value by helping drivers avoid traffic delays. As an innovative premium automaker, BMW has developed a testing process to acquire and analyze RTTI data in order to ensure delivery of a high quality service and to enhance the customer experience compared to audible broadcast services. With a methodology to obtain valid and repeatable RTTI data quality measurements, BMW and its service partner, Clear Channel's Total Traffic Network (TTN), can improve its offered service over time, implement corrective measures when appropriate, and confidently ensure the service meets its premium objectives. BMW has partnered with TTN and SoftSolutions GmbH to implement a traffic data quality process and software tools.
Technical Paper

Analysis of Underbody Windnoise Sources on a Production Vehicle using a Lattice Boltzmann Scheme

A computational analysis of underbody windnoise sources on a production automobile at 180 km/h free stream air speed and 0° yaw is presented. Two different underbody geometry configurations were considered for this study. The numerical results have been obtained using the commercial software PowerFLOW. The simulation kernel of this software is based on the numerical scheme known as the Lattice-Boltzmann Method (LBM), combined with a two-equation RNG turbulence model. This scheme accurately captures time-dependent aerodynamic behavior of turbulent flows over complex detailed geometries, including the pressure fluctuations causing wind noise. Comparison of pressure fluctuations levels mapped on a fluid plane below the underbody shows very good correlation between experiment and simulation. Detailed flow analysis was done for both configurations to obtain insight into the transient nature of the flow field in the underbody region.
Technical Paper

BMW's Magnesium-Aluminium Composite Crankcase, State-of-the-Art Light Metal Casting and Manufacturing

This paper presents new aspects of the casting and manufacturing of BMWs inline six-cylinder engine. This new spark-ignition engine is the realization of the BMW concept of efficient dynamics at high technological level. For the first time in the history of modern engine design, a water-cooled crankcase is manufactured by magnesium casting for mass production. This extraordinary combination of magnesium and aluminium is a milestone in engine construction and took place at the light-metal foundry at BMW's Landshut plant. This paper gives a close summary about process development, the constructive structure, and the manufacturing and testing processes.
Technical Paper

Nanomaterials - A New Dimension in Automotive Engineering

Modern automotive engineering is more than ever affected by a multitude of different and sometimes contradictory requirements. Innovative materials play an increasingly important role in ensuring the fulfillment of these requirements. Conventional material development has always met these demands to a high standard. However, there will be challenges where nanotechnology will provide us with even more intelligent solutions. Consequently, automotive engineering makes more and more use of the large variety of new technological functionalities and innovative applications offered by nanotechnology. Nanotechnology involves property changes that only occur at the nanoscale. Some selected properties are suitable to be used in the design of tailored materials called nanomaterials, opening up a new dimension in automotive engineering. Nanomaterials promise valuable progress through new functionalities, in particular safety and quality rating applications or lightweight construction.