Refine Your Search

Topic

Affiliation

Search Results

Journal Article

A Methodology to Integrate a Nonlinear Shock Absorber Dynamics into a Vehicle Model for System Identification

2011-04-12
2011-01-0435
High fidelity mathematical vehicle models that can accurately capture the dynamics of car suspension system are critical in vehicle dynamics studies. System identification techniques can be employed to determine model type, order and parameters. Such techniques are well developed and usually used on linear models. Unfortunately, shock absorbers have nonlinear characteristics that are non-negligible, especially with regard the vehicle's vertical dynamics. In order to effectively employ system identification techniques on a vehicle, a nonlinear mathematical shock absorber model must be developed and then coupled to the linear vehicle model. Such an approach addresses the nonlinear nature of the shock absorber for system identification purposes. This paper presents an approach to integrate the nonlinear shock absorber model into the vehicle model for system identification.
Journal Article

Investigation of Trailer Yaw Motion Control Using Active Front Steer and Differential Brake

2011-04-12
2011-01-0985
This paper presents a control system development for a yaw motion control of a vehicle-trailer combination using the integrated control of active front steer (AFS) and differential brake (DB). A 21 degree of freedom (dof) vehicle-trailer combination model that represents a large SUV and a medium one-axle trailer has been developed for this study. A model reference sliding mode controller (MRSMC) has been developed to generate the desired yaw moment. Based on the understanding of advantages and limitations of AFS and DB, a new integrated control algorithm was proposed. The simulation result shows that integrated control of AFS and DB can restrain the trailer's oscillation effectively and shows less longitudinal speed drop and higher stable margin compared to the DB activated only case while maintaining the yaw stability.
Journal Article

Numerical Optimization on a Centrifugal Turbocharger Compressor

2008-06-23
2008-01-1697
Performances of a centrifugal turbocharger compressor are investigated and validated in this paper. Based on the validation results, numerical optimizations are performed using ANN and CFD methods. Different impeller geometry with free parameters controlling stacking laws, end-wall, blade sectional camber curves and corresponding performances are used as input layer of ANN in the optimization, while adiabatic total-to-total efficiency and total pressure ratio are used as output layer of the optimization cycle. With this method, the performances of the compressor investigated in this paper are improved notably.
Technical Paper

One-dimensional Simulation Study on the Rule of Several-parameter Matching for the Performance of a Turbocharged Diesel Engine

2008-06-23
2008-01-1696
One-dimensional combustion performance of a turbocharged V-type eight-cylinder diesel engine was computed by used of WAVE code. The parameters of compress ratio, intake temperature, intake pressure, fuel injection quantity, advance angle of injection, fuel injection rate and fuel injection duration were changed so as to study quantificationally how these parameters affect the power, fuel consume, the max combustion pressure, exhaust temperature and emission of the diesel engine. The computational results could help to accomplish the preliminary optimization of several parameters for combustion matching and supplement experimental experience and exploit new products.
Technical Paper

Investigation of Nozzle Clearance Effects on a Radial Turbine: Aerodynamic Performance and Forced Response

2013-04-08
2013-01-0918
Variable nozzle turbine (VNT) technology has become a popular technology for diesel engine application. To pivot the nozzle vane and adjust the turbine operating condition, nozzle clearances are inevitable on both the hub and shroud side of turbine housing. Leakage flow formed inside the nozzle clearance leads to extra flow loss and makes the nozzle exit flow less uniform, thus further affects downstream aerodynamic performance of the rotor. As the leakage mixing with nozzle wake flow, the process is highly unsteady, which increases the fluctuation amplitude of transient load on the rotating turbine wheels. In present paper, firstly steady CFD analysis of a turbocharger turbine was performed at different nozzle openings. Then unsteady simulation of the turbine was carried out to investigate the interaction between the leakage flow through nozzle clearance and the main flow. Nozzle clearance's effect on turbine performance was investigated.
Journal Article

Combustion and Emission Characteristics of a Heavy-Duty Diesel Engine at Idle at Various Altitudes

2013-04-08
2013-01-1516
This present paper described an experimental study on the combustion and emission characteristics of a diesel engine at idle at different altitudes. Five altitudes ranging from 550m to up to 4500m were investigated. Combustion parameters including in-cylinder pressure and temperature, heat release, fuel mass burning and so forth, together with emission factors including CO, HC, NOx and PM were tested and analyzed. The result of on-board measurement manifested that in-cylinder pressure descended consistently with the rising of altitude, while both the maximum in-cylinder temperature and exhaust temperature ascended with the altitude. It was found that ignition delay was lengthened at higher altitude, but the combustion duration became shorter. The crank angle towards 90% fuel burnt has hardly changed with the variation of altitude. As for heat release, the difference of slopes observed at different altitudes was quite slight.
Technical Paper

Comparison of Regulated Emissions and Particulate Matter of Gasoline/CNG Dual-Fuel Taxi Over New European Driving Cycle

2014-04-01
2014-01-1467
Compressed natural gas (CNG) is widely used as an alternative option in spark ignition engines because of its better fuel economy and in part cleaner emissions. To cope with the haze weather in Beijing, about 2000 gasoline/CNG dual-fuel taxis are servicing on-road. According to the government's plan, the volume of alternative fuel and pure electric vehicle will be further increased in the future. Thus, it is necessary to conduct an evaluation on the effectiveness of alternative fuel on curbing vehicular emissions. This research examined the regulated emissions and particulate matter of gasoline/CNG dual-fuel taxi over New European Driving Cycle (NEDC). Emission tests in gasoline- and CNG-fuelled, cold- and warm-start modes were done for all five taxies. Test vehicles, Hyundai Elantra, are powered by 1.6L spark-ignited engines incorporated with 5-gear manual gearboxes.
Technical Paper

Research on the UML-based Modeling of Embedded Software for Diesel Engine Control System

2013-09-08
2013-24-0135
The method and steps for software modeling of the embedded control systems for diesel engine based on UML are described in this paper. In order to meet the software function and the features of the system, object-oriented modeling for diesel engine embedded control software system has been implemented. Requirements are depicted by use case diagram and the logic structure is depicted by class diagram. According to the domain knowledge and the class diagram, the sequence diagram and state diagram are developed to describe the dynamic behavior of the system. The level of software development has been enhanced to the system level by software modeling. It focuses on the automotive field, and can be easy to grasp the problem from the overall perspective and discover software design problems at the early stage. It is also convenient to solve the problems caused by the change of requirements. The model has an excellent flexibility so that it can be applied to different software platforms.
Technical Paper

A Study of Hydrogen Internal Combustion Engine EGR System

2014-04-01
2014-01-1071
NOx are the only harmful emissions of hydrogen internal combustion engine. EGR is one of the effective methods to reduce NOx. The traditional EGR is not suitable for hydrogen internal combustion engine. Therefore, the study of influence of hot EGR on hydrogen internal combustion engine is important. A 2.0L hydrogen internal combustion engine with hot EGR system model is employed to optimize the diameter and position of hot EGR based on a simulation analysis. The result shows that both of the combustion temperature and NOx increase as EGR increases due to the rise of intake temperature for low load condition, for heavy load, with the increase of EGR rate, NOx emissions decreases slightly before the mixture equivalence ratio comes to 1and then dropped significantly after the mixture equivalence ratio greater than 1. Unburned hydrogen in TWC has the effect of reducing NOx after catalysts decrease largely.
Technical Paper

Control-Oriented Modeling of Turbocharged Diesel Engines Transient Combustion Using Neural Networks

2014-04-01
2014-01-1093
Study and modeling of diesel combustion during transient operations is an important scientific objective. This is partially due to the fact that emissions under transient operations have aroused increasing attention by control groups during recent decades. The objective of this paper is to develop a combustion model to predict the peculiarities of transient combustion for developing and testing control strategies. To by-pass the complicated principles of transient combustion, the Neural Networks are applied to link the coefficients in an empirical combustion model with engine operating parameters. Finally, the Neural Networks combustion model would not only reflect the influence of turbocharge lag on combustion process during transient event, which cannot be predicted by its interpolation alternative, but also shown great potential for analyzing combustion characteristics during load increase transient event or other transient operations.
Technical Paper

Effects of Electrically Heated Catalyst on the Low Temperature Performance of Vanadium-Based SCR Catalyst on Diesel Engine

2014-04-01
2014-01-1527
The NOx conversion efficiency of vanadium-based SCR catalyst is lower under low temperature. Utilizing an exhaust analyzer, the effects of electrically heated catalyst on the performance of vanadium-based SCR catalyst under low temperature was studied on the engine test bench. The inlet temperature of SCR catalyst without the electrically heated catalyst were in the range of 150°C∼270°C under various steady engine modes, and the NSR (Normalized Stoichiometric Ratio) was set as 0.4,0.6,0.8,1.0. The results showed that under the space velocity of 20000h−1, with the application of the electrically heated catalyst, the inlet temperature of SCR increased about 19.9°C on average and the NOx conversion efficiency improved about 8.0%. The NOx conversion efficiency increased 1.7%∼8.6% at the temperatures of 150°C∼174°C, and 1.0%∼15.9% at the temperatures of 186°C∼270°C.
Technical Paper

Development of Effective Bicycle Model for Wide Ranges of Vehicle Operations

2014-04-01
2014-01-0841
This paper proposes an effective nonlinear bicycle model including longitudinal, lateral, and yaw motions of a vehicle. This bicycle model uses a simplified piece-wise linear tire model and tire force tuning algorithm to produce closely matching vehicle trajectory compared to real vehicle for wide vehicle operation ranges. A simplified piece-wise tire model that well represents nonlinear tire forces was developed. The key parameters of this model can be chosen from measured tire forces. For the effects of dynamic load transfer due to sharp vehicle maneuvers, a tire force tuning algorithm that dynamically adjusts tire forces of the bicycle model based on measured vehicle lateral acceleration is proposed. Responses of the proposed bicycle model have been compared with commercial vehicle dynamics model (CarSim) through simulation in various vehicle maneuvers (ramp steer, sine-with-dwell).
Technical Paper

Experimental Study on Hydraulic Free Piston Diesel Engine

2010-10-25
2010-01-2149
In this paper the experiments of hydraulic free piston diesel engine is described. The experimental data were obtained from measurement instruments on the free piston diesel engine that has been developed by Beijing Institute of Technology [ 1 ]. This article discusses the influences of compression pressure, injection timing, and combustion process to the free piston diesel engine principle. The compression process experiment shows that the piston velocity, the compression ratio can be controlled by adjusting the compression pressure. With the increasing of the compression pressure, there is a growing a compression ratio and piston velocity. The study on injection timing shows that the injection timing impacts the cylinder pressure peak value and the pressure peak arrival time. The combustion process is quite different from the crankshaft engine because of the unique piston movement characteristics of the hydraulic free piston engine.
Technical Paper

Analysis of Combustion and Particulate Emissions when Hydrogen is Aspirated into a Gasoline Direct Injection Engine

2010-04-12
2010-01-0580
A single-cylinder Gasoline Direct Injection Engine (GDI) engine with a centrally mounted spray-guided injection system (150 bar fuel pressure) has been operated with stoichiometric and rich mixtures. The base fuel was 65% iso-octane and 35% toluene; hydrogen was aspirated into a plenum in the induction system, and its equivalence ratios were set to 0, 0.02, 0.05 and 0.1. Ignition timing sweeps were conducted for each operating point. Combustion was speeded up by adding hydrogen as expected. In consequence the MBT ignition advance was reduced, as were cycle-by-cycle variations in combustion. Adding hydrogen led to the expected reduction in IMEP as the engine was operated at a fixed manifold absolute pressure (MAP). An engine model has also been set up using WAVE. Particulate Matter (PM) emissions were measured with a Cambustion DMS500 particle sizer.
Technical Paper

Prediction of Structural Acoustic Radiation for Compressor Considering Airflow Pulsed Load

2011-05-17
2011-01-1722
A coupled vibro-acoustic of a compressor modeling process was demonstrated for predicting the acoustic radiation from a vibrating compressor structure based on dynamic response data. FEM based modal analysis of the compressor was performed and the result was compared with experimental data, for the purpose of validating the FE model. Modal based force response analysis was conducted to calculate the compressor's surface vibration velocity on radiating structure, using the load which caused by mechanical excitation as input data. In addition, due to the coolant had oscillating gas pressure, the gas pulsed load was also considered during the dynamic response analysis. The surface vibration velocity solution of the compressor provided the necessary boundary condition input into a finite element/boundary element acoustic code for predicting acoustic radiation.
Technical Paper

Experimental and Computational Analysis of Impact of Self Recirculation Casing Treatment on Turbocharger Compressor

2010-04-12
2010-01-1224
Self recirculation casing treatment has been showed to be an effective technique to extend the flow range of the compressor. However, the mechanism of its surge extension on turbocharger compressor is less understood. Investigation and comparison of internal flow filed will help to understand its impact on the compressor performance. In present study, experimentally validated CFD analysis was employed to study the mechanism of surge extension on the turbocharger compressor. Firstly a turbocharger compressor with replaceable inserts near the shroud of the impeller inlet was designed so that the overall performance of the compressor with and without self recirculation casing treatment could be tested and compared. Two different self recirculation casing treatments had been tested: one is conventional self recirculation casing treatment and the other one has deswirl vanes inside the casing treatment passage.
Technical Paper

Design and Application of the ECU Application Software Components Library for Diesel Engine

2014-04-01
2014-01-0193
Based on MATLAB/Simulink, the ECU application software components library for diesel engine has been designed in this paper. The hierarchic and modularized components library is an open research platform for the model-based control software development. Using the components technology, the requirements of the diesel engine ECU application software have been analyzed, upon which the detailed components partition and the components library design have been accomplished. Besides, based on this components library, a control prototype for the diesel engine has been established quickly and verified through the Hardware-in-the-Loop test. The ECU software design and test process based on the components library show a good flexibility of the library, and it can improve the configurability and reusability of the software and increase the efficiency of the control software development.
Technical Paper

Effect of Piston Dynamic on the Working Processes of an Opposed-Piston Two-Stroke Folded-Cranktrain Engine

2014-04-01
2014-01-1628
An opposed-piston two-stroke folded-cranktrain diesel engine was studied in this paper. In order to achieve asymmetric scavenging, asymmetric angle between two crank throws were designed. However asymmetric crank-throw angle has direct effect on the piston dynamic, which affects engine performance. This paper investigated the characteristics of the piston dynamic on an opposed-piston two-stroke folded-cranktrain diesel engine; effects of the asymmetric angle on the piston displacement, velocity and acceleration were analyzed; further researches were done to studied the effect of piston dynamic on the gas exchange performance and in-cylinder performance. The results show that, larger asymmetric angle is positive for the scavenging efficiency but negative for combustion.
Technical Paper

Design and Performance Simulation of Opposed-Piston Folded-Cranktrain Engines

2014-04-01
2014-01-1638
In this paper, a new-type balanced opposed-piston folded-cranktrain (OPFC) two-stroke diesel engine is developed by Beijing Institute of Technology. OPFC has some potential advantages such as simple structure, good balance, compact, high power density and thermal efficiency. The structural feature of OPFC engine leads to the performance is different with the conventional engine. In order to study and verify the characteristics of this kind of engine, the folded-crank train dynamics, cylinders scavenging process and combustion process are investigated. The influence of parameters on the engine performance is investigated, includes the fuel injection timing, intake/exhaust port timing. In addition, the nozzle diameter is investigated as a main factor to affect the mixture and combustion process in the cylinder.
Technical Paper

Investigation on the Effects of Nozzle Openings for a Radial Turbine with Variable Nozzle

2014-04-01
2014-01-1648
Variable nozzle turbine (VNT) adjusts the openings of its nozzles to insure the required flow at throat area, which broadens the operating range of the turbine, and improves the matching relationship between the turbocharger and the engine. But the changes of nozzle openings have significant influence on the flow field structure of downstream radial turbine. To evaluate this effect, the leakage flow through nozzle clearance in various nozzle openings were simulated by unsteady computational fluid dynamic (CFD). Meanwhile, the interaction between nozzle clearance leakage flow and nozzle wake were investigated to reveal its effects on aerodynamic losses and forced responses for downstream rotor. The results showed that the changes of nozzle openings not only affect the interaction between nozzle leakage flows and wake significantly, but also affect aerodynamic performance of the rotor and the blade forced response.
X