Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Mass Transport in a Spaceflight Plant Growth Chamber

1998-07-13
981553
The Plant Generic BioProcessing Apparatus (PGBA), a plant growth facility developed for commercial space biotechnology research, has flown successfully on 3 spaceflight missions for 4, 10 and 16 days. The environmental control systems of this plant growth chamber (28 liter/0.075 m2) provide atmospheric, thermal, and humidity control, as well as lighting and nutrient supply. Typical performance profiles of water transpiration and dehumidification, carbon dioxide absorption (photosynthesis) and respiration rates in the PGBA unit (on orbit and ground) are presented. Data were collected on single and mixed crops. Design options and considerations for the different sub-systems are compared with those of similar hardware.
Technical Paper

Spaceflight Plant Science Integration, Testing and Functional/Compatibility Verification

2003-07-07
2003-01-2480
Plant growth chambers, whether designed for Earth or space applications, should provide the basic means for supporting healthy plant growth of almost any species. These chambers typically satisfy species- and age-specific light, atmosphere composition, water and nutrient requirements. Engineering solutions to satisfy these basic requirements in different plant chambers may vary widely, and each species or each experimental protocol may need individual testing and adaptation of the supporting hardware and science protocols. This paper will summarize the design trades, tests and evaluation experiments conducted to ensure proper hardware functionality and proper hardware / lifeware compatibility for the desired experimental protocols in space.
Technical Paper

Designing Fluid Handling Systems for Space Life Science Experimentation

2002-07-15
2002-01-2281
The increased demand in the area of space life sciences necessitates the need for more experimentation hardware with increased capabilities. Due to the high cost of hardware development for space based research, new hardware should be modular in design and suited to handle a variety of different experiments. The fluid handling systems found in experimentation hardware will often share many of the same requirements for different experiments. A design process that can be used for biological fluid handling systems that cover a wide range of experimentation requirements is proposed. Important parameters to be considered when making a trade study for selection of system components will be discussed. This paper will address topics of current research in space life sciences and describe state of the art hardware that is available or under development for use.
X