Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

AFPAC - Accurate Fuselage Panel Assembly Cell

The Accurate Fuselage Panel Assembly Cell (AFPAC) is a semi-automated process that was developed for accurately assembling fuselage panels on the Boeing 757 model line. This method of assembly (prior to automatic fastening) uses a new generation, accurate CNC machine tool in conjunction with reconfigurable part fixturing techniques and specialized end-of-arm tools (end effectors). These end effectors drill coordination holes in detail parts and the skin, and trim the periphery of the skin. Machine control data (MCD) for positioning the machine tool and other subsystems are developed directly from the engineering digital definition (CATIA datasets). Reconfigurable part holding and feeding mechanisms are used to allow for product changes and reduce the overall cost of the workcell. This paper describes the AFPAC assembly system and how it compares with the traditional concept of fuselage panel assembly.
Technical Paper

An Accurate and Flexible System for Measuring Fastener Gage Protrusion

A new gage block system for measuring fastener gage protrusion has been developed that is precise and cost effective. A chamfered gage bore and shank constraint inserts provide improved wear characteristics and a ten to one reduction in block requirements. Accuracy and repeatability performance makes the system an attractive candidate for Statistical Process Control for the tightest tolerance fasteners. A new “block custom” calibration process assures accuracy and allows wider tolerances on gage block dimensions. Through better control of gage protrusion in fastener manufacturing, airplane manufacturers can expect improvements in fastener installation quality and eventually in customer satisfaction.
Technical Paper

777 Automated Spar Assembly Tool - Second Generation

The Automated Spar Assembly Tool (ASAT II) at the Everett, Washington, 777 Boeing manufacturing facility could be the largest automated fastening cell in the commercial aircraft industry. Based on the success of the ASAT I, Boeing's 767 spar assembly tool, the 285-foot long ASAT II cell was needed to accurately position and fasten the major spar components (chords and web), then locate and fasten over 100 components (ribposts and stiffeners) to assemble the 777 forward and rear wing spars. From its inception in 1990 to the first drilled hole in January 1993 and through two years of spar production, the more advanced ASAT II has proven to be a greater success than even its 767 ASAT I predecessor. This massive automated fastening system consistently provides accurate hole preparation, inspection, and installation of three fastener types ranging from 3/16 inches to 7/16 inches in diameter.
Technical Paper

Aluminum-Lithium (Alloy 2090) Fastening Evaluation for Commercial Aircraft Applications

During design of the 777 Airplane, light gage, near net section 2090-T86 extrusions were considered to reduce aircraft weight. The need to evaluate effects of fastener installation on 2090-T86 was indicated by a previous study documenting problems due to low short transverse tensile strength. Tests by Boeing installing fasteners into holes using interference fits showed 2090-T86 was more susceptible to damage from fastening than previously reported. Damage consisted of cracks normal to the short transverse direction around the periphery of the fastener hole. This report documents the test program conducted at Boeing.
Technical Paper

Certification of Automatic Hydraulic-Squeeze Fastening Equipment

With the increasing shift toward automation with respect to fastener installation, the need has evolved for clearer definition of the process capability of new fastener installation automation systems. In light of Engineering design requirements, and to address the process capability issue, Boeing has developed and implemented D6- 56617, a machine certification process for automated fastening of fuselage structure. This philosophy was a new approach in the following ways: 1. Previously, engineering oversight of automated fastening systems was limited to wing structure applications. 2. The process requires that process capabilities and performance of the automated machinery itself be established by test. 3. The process requires that detailed Process Control Documents be developed and followed. 4. The process links the statistical test data to the day to-day operating parameters of the machine.