Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Analysis of Port Injected Fuel Spray Under Cross Wind Using 2-D Measurement Techniques

2010-09-28
2010-32-0064
In a motorcycle gasoline engine, the port fuel injection system is rapidly spread. Compared to an automotive engine, the injected fuel does not impinge on the intake valve due to space restriction to install the injector. In addition, as the air flow inside the intake pipe may become very fast and has large cycle-to-cycle variation, it is not well found how the injector should be installed in the intake pipe to prepare “good” fuel-air mixture inside the intake pipe. In this study, the formation process of the fuel-air mixture is measured by using ILIDS system that is a 2-D droplets' size and velocity measurement system with high spatial resolution. Experiments with changing conditions such as flow speed and injection direction are carried out. As a result, the effects of injection direction, ambient flow speed and wall roughness on the fuel-air mixture formation process was examined, considering the three conditions of cold start, light to medium load operation and high load operation.
Journal Article

Extension of Operating Range of a Multi-Cylinder Gasoline HCCI Engine using the Blowdown Supercharging System

2011-04-12
2011-01-0896
The objective of this study is to develop a practical technique to achieve HCCI operation with wide operation range. To attain this objective, the authors previously proposed the blowdown supercharge (BDSC) system and demonstrated the potential of the BDSC system to extend the high load HCCI operational limit. In this study, experimental works were conducted with focusing on improvement of combustion stability at low load operation and the reduction in cylinder to cylinder variation in ignition timing of multi-cylinder HCCI operation using the BDSC system. The experiments were conducted using a slightly modified production four-cylinder gasoline engine with compression ratio of about 12 at constant engine speed of 1500 rpm. The test fuel used was commercial gasoline which has RON of 91. To improve combustion stability at low load operation, the valve actuation strategy for the BDSC system was newly proposed and experimentally examined.
Technical Paper

Mixing Flow Phenomena of Natural Gas and Air in the Mixer of a CNG Vehicle

1998-05-04
981391
In this paper, visualization by means of the Schlieren method was accomplished in a two dimensional flow channel model of a CNG engine mixer. From the visualization results:(1)Mixing in the region of the venturi tube and throttle valve was influenced by the throttle opening and by the distance of the nozzle and valve, and in addition in this region natural gas behavior shows many different flow patterns.(2)The mixing (diffusion) characteristics clarified the relationship between the throttle opening and two natural gas flows; high velocity flow near the channel wall and swirl flow under the throttle valve.(3)The concept of gas and air mixing being affected by the dimensions of the main elements (main nozzle, venturi tube, throttle valve, their relative relationships and auxiliary air) of the CNG mixer were clearly shown. Premixing of natural gas and air in a CNG engine vehicle is said to be inadequate because it adversely influences the engine combustion and emission characteristics.
Technical Paper

A Study on Combustion Characteristics of DISC Rotary Engine Using a Model Combustion Chamber

1994-03-01
941028
A model combustion chamber of Wankel type rotary engine was employed to study the DISC RE system. A two-stroke Diesel engine's cylinder head was replaced with this combustion chamber to simulate temporal change of air flow and pressure fields inside the chamber as an actual engine. The base engine was motorized to operate as a continuous rapid compression and expansion machine. Pilot fuel spray was injected onto a glow plug to form a pilot flame and it ignites the main fuel spray. The ignitability of pilot fuel, mixture formation process, ignition process of main fuel by pilot flame and the effect of pilot and main injection timings on combustion characteristics were examined.
Technical Paper

Air Flow Distribution on the Transient Conditions of SI Engine

1994-10-01
941882
In order to study air flow distribution to individual cylinders of an SI engine at transient conditions, a new small-sized high-response air flow meter was investigated and developed to measure instantaneous air flow rates. The experiments were performed with changes in initial throttle opening, throttle movement angle and period, and crank-angle at the opening of the throttle valve and related engine speeds. Air flow rates for individual cylinders of a four cylinder engine were measured during acceleration. The relative rising rate was used for estimation of air distribution values, namely, the ratio of the initial amount of increased air flow rate of to the air flow rate for each cylinder. Air flow begins to increase from the second induction stroke from throttle opening. The variations of crank-angle at throttle opening influences the rate of increase. The effect of transient conditions on air flow rate distribution was researched.
Technical Paper

Air Flow Visualization in a Multi-Point Injection Type Manifold

1995-10-01
952488
This paper has two purposes: the first is to study the air flow behavior in the MPI type engine manifold by means of flow visualization; the second purpose is the verification of the air flow characteristics described in SAE paper No.950066 (1)using the results of that paper. The tuft grid method was adopted for air visualization. The MPI type engine manifold used in this study (common chamber) has dimensions of 332 × 79 × 74mm. The amount of the tuft is 630 points. Two directions(yz and xz planes, respectively) of the tuft were instantaneously photographed at every 20 degrees of crank angle and the composed direction was calculated. The experimental conditions are 1) steady air flow, 2) transient flow, 3) the inlet pipe position and 4) ram pipe locations.
Technical Paper

Analysis of DISC Rotary Engine Combustion Using Improved Pilot Flame Ignition System

1996-10-01
962021
In order to enhance the reliability of a pilot flame ignition system, three kinds of subchambers in which a pilot injector and a glow plug were set up were tested with a model combustion chamber of DISC rotary engine. A two-stroke Diesel engine's cylinder head was replaced with this model combustion chamber to simulate temporal changes of air flow and pressure fields inside the chamber as an actual engine. The behavior of the pilot flame generated in the subchamber, ignition process of main fuel spray by the pilot flame, the most suitable mixture distribution between the main chamber and the subchamber, and the effect of nozzle diameter of main injector on combustion characteristics were studied by using a high-speed video camera and ion probes.
Technical Paper

Analysis of Mixture Formation Process with a Swirl-Type Injector

2000-06-19
2000-01-2057
A swirl-type injector is commonly used for the gasoline direct injection IC engines. To control and optimize the engine combustion, analyses of mixture formation process inside the cylinder are quite important. In this study, an evaluation of a DDM (Discrete Droplet Model) including breakup and evaporation sub-models has been made by making comparisons between the calculation and measurement. In the calculation, two kinds of initial conditions were tested; one was from empirical expressions and the other was from calculated results using a VOF (Volume Of Fluid) model that had a feature to examine the free fluid surface of a liquid fuel spray. As a result, the authors have found that a DDM can basically explain the spray formation process. However, much further modification of the breakup model and initial conditions would be required to have a quantitatively good agreement between the calculation and measurement
Technical Paper

Analysis of Mixture Formation Process in a PFI Motorcycle Engine

2015-11-17
2015-32-0767
PFI (Port Fuel Injection) gasoline engines for motorcycles have some problems such as slow transient response because of wall wet of fuel caused by the injector's layout. Hence, it is important to understand the characteristics of fuel sprays such as droplet size and distribution of fuel concentration. Considering the spray formation in a port, there are three kinds of the essential elements: breakup, evaporation and wall impingement. However, it is difficult to observe three of them at the same time. Therefore, the authors have made research step by step. In the authors' previous study, the authors focused on the wall collision, droplet sizes, droplet speeds and the space distribution of the droplets. In this study, the authors focused on evaporation. A direct sampling method using FID (Flame Ionization Detector) for evaporating fuel was established and the concentration distribution of evaporating fuel in the port was measured and analyzed.
X