Refine Your Search

Topic

Search Results

Technical Paper

Effects of Direct Injection Timing and Air Dilution on the Combustion and Emissions Characteristics of Stratified Flame Ignited (SFI) Hybrid Combustion in a 4-Stroke PFI/DI Gasoline Engine

2020-04-14
2020-01-1139
Controlled Auto-Ignition (CAI) combustion can effectively improve the thermal efficiency of conventional spark ignition (SI) gasoline engines, due to shortened combustion processes caused by multi-point auto-ignition. However, its commercial application is limited by the difficulties in controlling ignition timing and violent heat release process at high loads. Stratified flame ignited (SFI) hybrid combustion, a concept in which rich mixture around spark plug is consumed by flame propagation after spark ignition and the unburned lean mixture closing to cylinder wall auto-ignites in the increasing in-cylinder temperature during flame propagation, was proposed to overcome these challenges.
Technical Paper

Numerical Investigations on Strong Knocking Combustion under Advanced Compression Ignition Conditions

2020-04-14
2020-01-1137
Homogeneous charge compression ignition (HCCI) combined with high compression ratio is an effective way to improve engines’ thermal efficiency. However, the severe thermodynamic conditions at high load may induce knocking combustion thus damage the engine body. In this study, advanced compression ignition knocking characteristics were parametrically investigated through RCM experiments and simulation analysis. First, the knocking characteristics were optically investigated. The experimental results show that there even exists detonation when the knock occurs thus the combustion chamber is damaged. Considering both safety and costs, the effects of different initial conditions were numerically investigated and the results show that knocking characteristics is more related to initial pressure other than initial temperature. The initial pressure has a great influence on peak pressure and knock intensity while the initial temperature on knock onset.
Technical Paper

Study on Combustion Information Feedback Based on the Combination of Virtual Model and Actual Angular Velocity Measurement

2020-04-14
2020-01-1151
Combustion closed-loop control is now being studied intensively for engineering applications to improve fuel economy. Currently, combustion closed-loop feedback control is usually based on the cylinder pressure signal, which is the most direct and exact signal that reflects engine working process. Although there were some relatively cheap types of in-cylinder pressure sensors, cylinder pressure sensors have not been widely applied because of their high price now. Moreover, the combustion analysis based on cylinder pressure imposes high requirements on the information acquisition capability of the current ECU, such as high acquisition and analog-digital conversion frequency and so on. For developing a low price and feasible technology, a new engine information feedback method based on model calculation and crank angular velocity measurement was proposed. A simplified combustion model was operated in ECU for the real-time calculation of cylinder pressure and combustion parameters.
Technical Paper

Experimental Study on Knock Mechanism with Multiple Spark Plugs and Multiple Pressure Sensors

2020-09-15
2020-01-2055
Engine knock is an abnormal phenomenon, which places barriers for modern Spark-Ignition (SI) engines to achieve higher thermal efficiency and better performance. In order to trigger more controllable knock events for study while keeping the knock intensity at restricted range, various spark strategies (e.g. spark timing, spark number, spark location) are applied to investigate on their influences on knock combustion characteristics and pressure oscillations. The experiment is implemented on a modified single cylinder Compression-Ignition (CI) engine operated at SI mode with port fuel injection (PFI). A specialized liner with 4 side spark plugs and 4 pressure sensors is used to generate various flame propagation processes, which leads to different auto-ignition onsets and knock development. Based on multiple channels of pressure signals, a band-pass filter is applied to obtain the pressure oscillations with respect to different spark strategies.
Technical Paper

Combustion Visualization and Experimental Study on Multi-Point Micro-Flame Ignited (MFI) Hybrid Lean-Burn Combustion in 4-Stroke Gasoline Engines

2020-09-15
2020-01-2070
Lean-burn combustion is an effective method for increasing the thermal efficiency of gasoline engines fueled with stoichiometric fuel-air mixture, but leads to an unacceptable level of high cyclic variability before reaching ultra-low nitrogen oxide (NOx) emissions emitted from conventional gasoline engines. Multi-point micro-flame ignited (MFI) hybrid combustion was proposed to overcome this problem, and can be can be grouped into double-peak type, ramp type and trapezoid type with very low frequency of appearance. This research investigates the micro-flame ignition stages of double-peak type and ramp type MFI combustion captured by high speed photography. The results show that large flame is formed by the fast propagation of multi-point flame occurring in the central zone of the cylinder in the double-peak type. However, the multiple flame sites occur around the cylinder, and then gradually propagate and form a large flame accelerated by the independent small flame in the ramp type.
Journal Article

Three-Dimensional Simulation of Water Management for High-Performance Proton Exchange Membrane Fuel Cell

2018-04-03
2018-01-1309
Proton exchange membrane fuel cell (PEMFC) is widely regarded as the most promising candidate for the next generation power source of automobile, after the pure battery electric vehicle. In this study, the gas and liquid two-phase flow in channels and porous electrodes inside PEMFC coupled with electrochemical reaction is simulated in detail, in which the anisotropic gas diffusion layer (GDL) is also considered. In the simulation, the inlet reactant gas molar concentration is calculated based on the real inlet pressure, which is more practical than specifying a constant value in previous simulation. Meanwhile, the effect of electro-osmotic drag on membrane water content distribution is treated to be a convection term in the conservation equation, instead of a source term as usually used.
Journal Article

Experimental Study on High-Load Extension of Gasoline/PODE Dual-Fuel RCCI Operation Using Late Intake Valve Closing

2017-03-28
2017-01-0754
The dual-fuel Reactivity Controlled Compression Ignition (RCCI) combustion could achieve high efficiency and low emissions over a wide range of operating conditions. However, further high load extension is limited by the excessive pressure rise rate and soot emission. Polyoxymethylene dimethyl ethers (PODE), a novel diesel alternative fuel, has the capability to achieve stoichiometric smoke-free RCCI combustion due to its high oxygen content and unique molecule structure. In this study, experimental investigations on high load extension of gasoline/PODE RCCI operation were conducted using late intake valve closing (LIVC) strategy and intake boosting in a single-cylinder, heavy-duty diesel engine. The experimental results show that the upper load can be effectively extended through boosting and LIVC with gasoline/PODE stoichiometric operation.
Technical Paper

Large-Scale Simulation of PEM Fuel Cell Using a “3D+1D” Model

2020-04-14
2020-01-0860
Nowadays, proton exchange membrane (PEM) fuel cell is widely seen as a promising energy conversion device especially for transportation application scenario because of its high efficiency, low operation temperature and nearly-zero road emission. Extensive modeling work have been done based on different dimensions during the past decades, including one-dimensional (1D), two-dimensional (2D), three-dimensional (3D) and intermediate combinations in between (e.g. “1+1D”). 1D model benefits from a rationally-chosen set of assumptions to obtain excellent calculation efficiency, yet at the cost of accuracy to some extent. In contrast, 3D model has great advantage over 1D model on acquiring more comprehensive information inside the fuel cell. For macro-scale modeling work, one compromise aiming to realize both acceptable computation speed and reasonable reflection of cell operation state is to simplify the membrane electrode assembly (MEA).
Technical Paper

Study on the Characteristics of Different Intake Port Structures in Scavenging and Combustion Processes on a Two-Stroke Poppet Valve Diesel Engine

2020-04-14
2020-01-0486
Two-stroke engines have to face the problems of insufficient charge for short intake time and the loss of intake air caused by long valve overlap. In order to promote the power of a two-stroke poppet valve diesel engine, measures are taken to help optimize intake port structure. In this work, the scavenging and combustion processes of three common types of intake ports including horizontal intake port (HIP), combined swirl intake port (CSIP) and reversed tumble intake port (RTIP) were studied and their characteristics are summarized based on three-dimensional simulation. Results show that the RTIP has better performance in scavenging process for larger intake air trapped in the cylinder. Its scavenging efficiency reaches 84.7%, which is 1.7% higher than the HIP and the trapping ratio of the RTIP reaches 72.3% due to less short-circuiting loss, 11.2% higher than the HIP.
Technical Paper

Numerical Investigation of the Combustion Kinetics of Partially Premixed Combustion (PPC) Fueled with Primary Reference Fuel

2020-04-14
2020-01-0554
This work numerically investigates the detailed combustion kinetics of partially premixed combustion (PPC) in a diesel engine under three different premixed ratio fuel conditions. A reduced Primary Reference Fuel (PRF) chemical kinetics mechanism was coupled with CONVERGE-SAGE CFD model to predict PPC combustion under various operating conditions. The experimental results showed that the increase of premixed ratio (PR) fuel resulted in advanced combustion phasing. To provide insight into the effects of PR on ignition delay time and key reaction pathways, a post-process tool was used. The ignition delay time is related to the formation of hydroxyl (OH). Thus, the validated Converge CFD code with the PRF chemistry and the post-process tool was applied to investigate how PR change the formation of OH during the low-to high-temperature reaction transition. The reaction pathway analyses of the formations of OH before ignition time were investigated.
Technical Paper

Effect of Injection Strategy on the Combustion and Knock in a Downsized Gasoline Engine with Large Eddy Simulation

2020-04-14
2020-01-0244
Strategies to suppress knock have been extensively investigated to pursue thermal efficiency limits in downsized engines with a direct-injection spark ignition. Comprehensive considerations were given in this work, including the effects of second injection timing and injector location on knock combustion in a downsized gasoline engine by large eddy simulation. The turbulent flame propagation is determined by an improved G-equation turbulent combustion model, and the detailed chemistry mechanism of a primary reference fuel is employed to observe the detailed reaction process in the end-gas auto-ignition process. The conclusions were obtained by comparing the data to the baseline single-injection case with moderate knock intensity. Results reveal that for both arrangements of injectors, turbulence intensity is improved as the injecting timing is retarded, increasing the flame propagation speed.
Technical Paper

Effect of Split Injection and Intake Air Humidification on Combustion and Emission Characteristics of a Marine Diesel Engine in Partially Premixed Low-Temperature Combustion Mode

2020-04-14
2020-01-0298
The objective of this study was to investigate combined effects of split injection strategies and intake air humidification on combustion and emissions of a partially premixed charge compression ignition (PCCI) marine diesel engine. In this research, a three-dimensional numerical model was established by a commercial code AVL-Fire to explore in-cylinder combustion process and pollutant formation factors in a four-stoke supercharged intercooled marine diesel engine under partial load at 1350 r/min. The novelty of this study is to combine different water-fuel ratios and fuel injection parameters (pilot injection timing and main injection timing) to find the optimized way to improve engine performance as well as NOx-soot emissions, thus meeting the increasingly stringent emissions restriction.
Journal Article

The Effects of EGR and Injection Timing on the Engine Combustion and Emission Performances Fueled by Butanol-Diesel Blends

2012-04-01
2011-01-2473
The combustion and emission characteristics of a diesel engine running on butanol-diesel blends were investigated in this study. The blending ratio of n-butanol to diesel was varied from 0 to 40 vol% using an increment of 10 vol%, and each blend was tested on a 2.7 L V6 common rail direction injection diesel engine equipped with an EGR system. The test was carried out under two engine loads at a constant engine speed, using various combinations of EGR ratios and injection timings. Test results indicate that n-butanol addition to engine fuel is able to substantially decrease soot emission from raw exhaust gas, while the change in NOx emissions varies depending on the n-butanol content and engine operating conditions. Increasing EGR ratio and retarding injection timing are effective approaches to reduce NOx emissions from combustion of n-butanol-diesel blends.
Journal Article

The Challenges of Devising Next Generation Automotive Benchmarks

2008-04-14
2008-01-0382
More than ever, microcontroller performance in cars has a direct impact on the driving experience, on compliance with improved safety, ever-stricter emissions regulations, and on fuel economy. The simple microcontrollers formerly used in automobiles are now being replaced by powerful number-crunchers with incredible levels of peripheral integration. As a result, performance can no longer be measured in MIPS (Millions of Instructions Per Second). A microcontroller's effectiveness is based on coherent partitioning between analog and digital, hardware and software, tools and methodology. To make an informed choice among the available devices, the designer needs benchmarks that are specific to automotive applications, and which provide a realistic representation of how the device will perform in the automotive environment.
Technical Paper

The Challenges of Next Generation Automotive Benchmarks

2007-04-16
2007-01-0512
More than ever, microcontroller performance in cars has a direct impact on the driving experience, on compliance with improved safety, ever-stricter emissions regulations, and on fuel economy. The simple microcontrollers formerly used in automobiles are now being replaced by powerful number-crunchers whose performance can no longer be measured in MIPS. Instead, their effectiveness is based on a coherent partitioning between analog and digital, hardware and software, tools and methodology. To make an informed choice among the available devices, what the designer needs are benchmarks that are specific to automotive applications, and which provide a realistic representation of how the device will perform in the automotive environment. This presentation will explore the role of new benchmarks in the development of complex automotive applications.
Technical Paper

Lithium-ion Battery Management Integrating Active Load Balancing

2008-04-14
2008-01-1335
Increasingly stringent requirements to improve fuel economy and reduce emissions are pushing the automotive industry toward more innovative solutions. To fulfill the demand, OEMs are developing hybrid systems with powerful electronics. The key technology is in all cases the battery. It is the most critical and expensive element of hybrid systems. The battery requires special care, as it must supply up to 400 Volts (V) and have a capacity of up to several kilowatt-hours (kWh). This paper will review the main functions of a Lithium-ion (Li-ion) battery management system, including power on/off, charging/discharging, and computation of the state of charge and state of health. In order to increase the battery lifespan, new functions such as active load balancing must be implemented.
Technical Paper

Advanced Gasoline Engine Management Platform for Euro IV & CHN IV Emission Regulation

2008-06-23
2008-01-1704
The increasingly stringent requirements in relation to emission reduction and onboard diagnostics are pushing the Chinese automotive industry toward more innovative solutions and a rapid increase in electronic control performance. To manage the system complexity the architecture will require being well structure on hardware and software level. The paper introduces GEMS-K1 (Gasoline Engine Management System - Kit 1). GEMS-K1 is a platform being compliant with Euro IV emission regulation for gasoline engines. The application software is developed using modeling language, the code is automatically generated from the model. The driver software has a well defined structure including microcontroller abstraction layer and ECU abstraction layer. The hardware is following design rules to be robust, 100% testable and easy to manufacture. The electronic components use the latest innovation in terms of architecture and technologies.
Technical Paper

Managing Automobile Energy and Pollution - Electronics the Ultimate Solution

2008-01-09
2008-28-0026
The number of vehicles in world has been steadily increasing over the years. Asia Pacific is blessed to have the fastest growth rate in the world, with China experiencing over 20% vehicle production growth in the recent and coming years. As India jumps on this explosive bandwagon which could see growth rates higher than China, there is a need to understand the environmental and cost aspects arising from the vast increase of automobiles. The need to protect the environment, combined with the limited resource of oil, has led to the need for more fuel-efficient vehicles with intelligent engine and transmission control systems. This paper/presentation will look into the tough emissions regulations, lower CO2 requirement, different fuels and their efficiency, alternative fuel and the infrastructure to support such a paradigm shift, cost to achieve the desired, and GEMS-K1 (Gasoline Engine Management System - Kit 1) as a solution to meet some of the issues mentioned.
Technical Paper

Automotive Sensors & Sensor Interfaces

2004-03-08
2004-01-0210
The increasing legal requirements for safety, emission reduction, fuel economy and onboard diagnosis systems push the market for more innovative solutions with rapidly increasing complexity. Hence, the embedded systems that will have to control the automobiles have been developed at such an extent that they are now equivalent in scale and complexity to the most sophisticated avionics systems. This paper will demonstrate the key elements to provide a powerful, scalable and configurable solution that offers a migration pass to evolution and even revolution of automotive Sensors and Sensor interfaces. The document will explore different architectures and partitioning. Sensor technologies such as magnetic field sensors based on the hall effect as well as bulk and surface silicon micro machined sensors will be mapped to automotive applications by examples. Functions such as self-test, self-calibration and self-repair will be developed.
Technical Paper

Digital Knock Signal Conditioning using Fast ADC and DSP

2004-03-08
2004-01-0517
The increasing legal requirements for safety, emission reduction, fuel economy and onboard diagnosis systems is pushing the market for more innovative solutions with rapidly increasing complexity. Hence, the embedded systems that will have to control the automobiles have been developed at such an extent that they are now equivalent in scale and complexity to the most sophisticated avionics systems. The former analogue filter design is now replaced by digital signal processing. This paper will demonstrate the key elements to provide a powerful, scalable and configurable solution that offers a migration route to evolve and even revolutionize automotive electronics. To illustrate this migration toward digital processing the knock function has been developed. A simple RC filter is used as external anti-aliasing. To get the maximum flexibility the signal is very early converted and processed digitally. The micro-controller has been developed using a three-layered solution.
X