Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

Technical Highlights of the Dodge Compressed Natural Gas Ram Van/Wagon

1992-08-01
921551
An OEM Natural Gas Vehicle (NGV) has been developed to address recently enacted Clean-Fuel Vehicle legislation. The NGV incorporates advanced fuel storage and fuel metering technologies to produce very low emissions and to provide superior customer value compared to aftermarket conversion units.
Technical Paper

Dodge Ram Pickup Vehicle: From Human Factors Development to Production Intent Metal Assembly

1993-11-01
932988
To evaluate and refine interior architecture of the new Dodge Ram pickup truck three years before production, a road worthy interior package validation buck was built using a fiberglass body shell. Molds for the shell were made using CAD/CAM techniques. Advanced CAD/CAM techniques were used to build the interior buck of a subsequent model from individual panels molded in carbon fiber. This buck also included inner structural panels and interior trim components taken from CAD data. For this and subsequent new vehicle programs, refinement of construction techniques allows the bucks to serve as aids in product design and manufacturing feasibility studies.
Technical Paper

Chrysler 8.0-Liter V-10 Engine

1993-11-01
933033
Chrysler Corporation has developed an 8.0-liter engine for light truck applications. Numerous features combine to produce the highest power and torque ratings of any gasoline-fueled light truck engine currently available while also providing commensurate durability. These features include: a deep-skirt ten-cylinder 90° “V” block, a Helmholtz resonator intake manifold that enhances both low and mid-range torque, light die cast all-aluminum pistons for low vibration, a unique firing order for smooth operation, a “Y” block configuration for strength and durability, a heavy duty truck-type thermostat to control warm up, and a direct ignition system.
Technical Paper

Body-in-White Prototype Process in Chrysler's Jeep/Truck Platform

1993-11-01
933038
Chrysler Corporation's Jeep and Truck platform implemented a new design and prototype process for the body-in -white of a new pickup truck. A team approach achieved concurrent body design, stamping die design, assembly process development, and assembly tooling development. The first domestic US industry use of a 100% electronic design and release system was instrumental in the process. The new process produced a prototype body-in-white on time at 95 WBVP (weeks before volume production) with the highest level of production-intent components ever achieved within Chrysler at this stage of development.
Technical Paper

Inadvertent Air Bag Sensor Testing for Off-Road Vehicles

1993-11-01
933020
This paper presents the development of a test procedure for evaluation of inadvertent deployment of air bags. The methodology and early development of the procedure is discussed along with additional criteria thought to be required for trucks and sport utility vehicles. Tests conducted address severe off-road use in relation to air bag sensing systems. Data is collected from accelerometers. After worst case test conditions are identified (examples include rough road, snow plowing and jerk towing events), the data is analyzed and comparisons for design decisions can be made.
Technical Paper

Comparison of Energy Management Materials for Head Impact Protection

1997-02-24
970159
Energy management materials are widely used in automotive interiors in instrument panel, knee bolster, and door absorber applications to reduce the risk of injury to an occupant during a crash. Automobile manufacturers must meet standards set by the National Highway Traffic Safety Administration (NHTSA) that identify maximum levels of injury to an occupant. The recent NHTSA upgrade to the Federal Motor Vehicle Safety Standard (FMVSS) 201 test procedure(1) for upper interior head impact protection has prompted energy management materials' use in several new areas of affected vehicles. While vehicle evaluations continue, results to date show that energy management foams can be effective in reducing the head injury criterion [HIC(d)] to acceptable government and OEM levels.
Technical Paper

Automated Test Request and Data Acquisition System for Vehicle Emission Testing

1997-02-24
970273
Due to new regulations, emissions development and compliance testing have become more complex. The amount of data acquired, the number of test types, and the variety of test conditions have increased greatly. Due to this increase, managing test information from request to analysis of results has become a critical factor. Also, automated test result presentation and test storage increases the value and quality of each test. This paper describes a computer system developed to cope with the increasing complexity of vehicle emission testing.
Technical Paper

Chrysler Evaporation Control System The Vapor Saver for 1970

1970-02-01
700150
A system for controlling gasoline evaporation losses from 1970 model Chrysler Corp. cars and light trucks was developed, certified for sale in California, and put into production. Evaporation losses from both the carburetor and the fuel tank are conducted to the engine crankcase for storage while the engine is shut down. The vapors are removed from the crankcase and utilized in the combustion process during subsequent vehicle operation. Particularly interesting in this unique, no-moving parts system, are the reliability and durability, and the vapor-liquid separator “standpipe.”
Technical Paper

TRUCK PERFORMANCE— Computed versus Measured Data

1958-01-01
580040
THIS paper outlines tests made to verify the SAE recommended practice for estimating truck ability performance described in TR-82. The author has collected data on four vehicles and compares it with the results computed in TR-82 and with a Method X. The data includes information on air and rolling resistance, effect of wind velocity, chassis friction power, grade ability, and the like. The author concludes that the SAE method of TR-82 is at the present time the most reliable method for computing truck ability.
Technical Paper

Application of Strain Analysis to Sheet Metal Forming Problems in the Press Shop

1968-02-01
680093
Strain analysis of stampings is explained. The system is based on the strain distributions obtained from 0.2 in. inter-locking circle grid patterns etched on blanks. The strain distributions are related to a developed formability limit curve and the mechanical properties of the gridded blank. The evaluation of the graphic relation of the strains to the formability limit enables the press shop to determine what factors should be changed to produce stampings with less scrap and lower cost.
Technical Paper

Chrysler Corporation's Isolated Transverse Torsion Bar Front Suspension

1977-02-01
770179
To satisfy the objectives of Chrysler's new generation of compact vehicles, a unique front suspension system was created. This system has achieved an outstanding level of ride comfort while providing significant advantages in the basic vehicle packaging. The key to the system is the transverse torsion bar and bushings which serve the dual function of suspension spring and fore and aft restraint for the lower control arm. Producing this torsion bar in mass production required advances in both engineering and manufacturing technology.
Technical Paper

Rating Transmissions from Highway Requirements and Vehicle Specifications

1960-01-01
600009
THE GRADEABILITY formula can be used as the basic means for rating a truck transmission. By correlating the gradeabilities in the various gear ratios with a highway requirement probability curve, the per cent of time in each ratio can be obtained. The required hours of gear life for each ratio are then determined, and compared with the available gear life in the ratios. This procedure gives a detailed analysis of a transmission rating for one vehicle specification at a specified mileage between overhauls. A limitation of the system is that it cannot be applied quickly to various vehicle specifications. The paper outlines the method for constructing a nomogram to overcome this.*
Technical Paper

Predicting ROAD PERFORMANCE of Commercial Vehicles

1950-01-01
500172
A SIMPLE method of predicting truck performance in terms of grade ability at a given road speed, taking into consideration rolling resistance, air resistance, and chassis friction is presented here. A brief review of fundamental considerations is given first, then the method recommended for predicting vehicle ability at a selected speed, and finally a few words on the prediction of maximum possible road speed and selection of gear ratios. The basis of the solution is the determination and expression of vehicle resistances in terms of horsepower - that is, in terms of forces acting at a velocity. A convenient method of solving the grade problem at a given speed is by means of a tabular computation sheet, which is given, together with tables and charts. These assist in making the computation an easy one as well as giving the necessary data on vehicle resistances.
Technical Paper

CAE Applications in the Automotive Industry-The Use of CAD for Vehicle Packaging and Master Drafts

1985-02-01
850446
Computer-aided engineering (CAE) is generally recognized as an important method of improving productivity. One of the major benefits of this technology has been to reduce the amount of manual labor spent analyzing changes made to vehicle designs. By using existing data, computer-aided design (CAD) can be used to co-ordinate the spatial relationships of the driver, passengers, engines, suspensions, tires, driver controls, and other body and chassis components. Special files containing a specific set of user-defined CAD language instructions, referred to as macros, are discussed and illustrated. Also included are tire clearance studies and master reference vehicle dimension files.
Technical Paper

Optimizing Press Performance for Difficult Automotive Stampings

1986-02-01
860440
A method has been employed in the stamping facility to reduce scrap by correlating observations from the press shop with laboratory test results. This paper illustrates the successful use of this method for reducing formability failures. Correlation of observed coating behavior with laboratory adherence tests is also discussed.
Technical Paper

Energy-Absorbing Polyurethane Foam to Improve Vehicle Crashworthiness

1995-02-01
950553
Federal legislation mandates that automotive OEMS provide occupant protection in collisions involving front and side impacts This legislation, which is to be phased-in over several years, covers not only passenger cars but also light-duty trucks and multipurpose passenger vehicles (MPVs) having a gross vehicle weigh rating (GVWR) of 8,500 lb (3,850 kg) or less. During a frontal impact, occupants within the vehicle undergo rapid changes in velocity. This is primarily due to rapid vehicle deceleration caused by the rigid nature of the vehicle's metal frame components and body assembly. Many of today's vehicles incorporate deformable, energy-absorbing (EA) structures within the vehicle structure to manage the collision energy and slow the deceleration which in turn can lower the occupant velocity relative to the vehicle. Occupant velocities can be higher in light-duty trucks and MPVs having a full-frame structure resulting in increased demands on the supplemental restraint system (SRS).
X