Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Experimental Investigation on a 3D Wing Section Hosting Multiple SJAs for Stall Control Purpose

Flow control over aerodynamic shapes in order to achieve performance enhancements has been a lively research area for last two decades. Synthetic Jet Actuators (SJAs) are devices able to interact actively with the flow around their hosting structure by providing ejection and suction of fluid from the enclosed cavity containing a piezo-electric oscillating membrane through dedicated orifices. The research presented in this paper concerns the implementation of zero-net-mass-flux SJAs airflow control system on a NACA0015, low aspect ratio wing section prototype. Two arrays with each 10 custom-made SJAs, installed at 10% and 65% of the chord length, make up the actuation system. The sensing system consists of eleven acoustic pressure transducers distributed in the wing upper surface and on the flap, an accelerometer placed in proximity of the wing c.g. and a six-axis force balance for integral load measurement.
Technical Paper

Improved Multibody Model of Flexible Wing

In the development of High Altitude Long Endurance (HALE) UAVs and their control the flexibility of the wing must be taken into account. The wing of this type of UAVs, usually made of highly flexible composite materials, has high aspect ratio with significant bending-torsional deformation during flight. The NASA Helios, as an example, has tragically shown that wing deformation coupled with control and power operation can cause serious problem in flight, instability can suddenly occur and can be quite difficult to foresee. In this paper the mathematical description of a flexible wing multibody model is presented. It is suitable to simulate the effect of both structural flexibility and flight dynamics and maneuvering on the wing deformation, and can be used to help developing control strategies for air vehicles with highly deformable wings.
Technical Paper

Active Flow and Aeroelastic Control of Lifting Surfaces Using Synthetic Jet Actuators

Active flow control devices such as zero-net-mass-flux actuators have broad aeronautical applications. Among them, low power and lightweight Synthetic Jet Actuators can be used to improve the performance of flight vehicles, providing load alleviation capabilities, expanding their flight envelope, and preventing catastrophic failure by aeroelastic instabilities. Numerical and experimental investigations are proving that SJAs are effective in actively altering the boundary layer; the effect of the momentum exchange due to the SJAs leads to a rearrangement of streamlines, a virtual aerodynamic shaping that enable changes in the aerodynamics forces acting on the lifting surfaces. This paper discusses development aspects that the authors have been conducting on the topic with applications to load alleviation and flutter suppression for aircraft wings.
Technical Paper

System Identification from GVT and Taxiing of an Unmanned Aerial Vehicle

The modal parameters of an aircraft structure are currently estimated from ground vibration tests (GVT). These tests are carried out on ground in order to estimate the frequency response functions first and then the modal parameters. Such estimates require one or more shakers to excite the structure together with simultaneous measurements of both the input and the output signals. Recent developments in operational modal analysis allowed such modal identification from the measurements of the output responses only, provided that the unmeasurable excitation is practically a white noise stochastic input in the frequency range of interest and is randomly exciting the different parts of the structure. In this paper the effects of the different test setup on the modal parameter estimates will be presented. Both input-output based experimental modal analysis and operational modal analysis are performed on an Unmanned Aerial Vehicle, the Clarkson University Golden Eagle.
Journal Article

A Reduced Order Model for the Aeroelastic Analysis of Flexible Wings

The aeroelastic design of highly flexible wings, made of extremely light structures yet still capable of carrying a considerable amount of non-structural weights, requires significant effort. The complexity involved in such design demands for simplified mathematical tools based on appropriate reduced order models capable of predicting the accurate aeroelastic behaviour. The model presented in this paper is based on a consistent nonlinear beam model, capable of simulating the unconventional aeroelastic behaviour of flexible composite wings. The partial differential equations describing the wing dynamics are reduced to a dimensionless form in terms of three ordinary differential equations using a discretization technique, along with Galerkin's method. Within this approach the nonlinear structural model an unsteady indicial based aerodynamic model with dynamic stall are coupled.
Journal Article

ℒ1 Adaptive Flutter Suppression Control Strategy for Highly Flexible Structure

The aim of this work is to apply an innovative adaptive ℒ1 techniques to control flutter phenomena affecting highly flexible wings and to evaluate the efficiency of this control algorithm and architecture by performing the following tasks: i) adaptation and analysis of an existing simplified nonlinear plunging/pitching 2D aeroelastic model accounting for structural nonlinearities and a quasi-steady aerodynamics capable of describing flutter and post-flutter limit cycle oscillations, ii) implement the ℒ1 adaptive control on the developed aeroelastic system to perform initial control testing and evaluate the sensitivity to system parameters, and iii) perform model validation and calibration by comparing the performance of the proposed control strategy with an adaptive back-stepping algorithm. The effectiveness and robustness of the ℒ1 adaptive control in flutter and post-flutter suppression is demonstrated.
Journal Article

Experimental In-Flight Rolling MAV Wing Deployment and Aerodynamic Characterization

The deployment dynamics of a tape-spring style, folding MAV wing in flight are complicated and an investigation is made using wind tunnel testing. High speed photography is used to characterize the deployment motion of the wing while a force balance records six- axis aerodynamic loading of the model. An in-flight deployment of a folding wing would be advantageous after an autonomous tube launch, however the dynamics are potentially problematic due to buckling. Steady state aerodynamics of prototype tube-launch MAVs are characterized for both rigid body and compliant, rolling wings. Aerodynamic phenomena associated with the significant relative body size are identified. Wing deployments are demonstrated at four different angles-of-attack at single velocity, while an extreme case deployment is shown at a high velocity. Two-piece cylindrical shells are used to retain the wing prior to deployment and are released by hot-wire cutting of retaining lines.
Technical Paper

Design and Experimental Investigation of a Small UAV

In this paper two different tools have been applied to the problem of designing a small UAV. With these tools a parametric study of wing configuration and sizing was performed. The focus of this study was to optimize range and endurance of the UAV during a particular flight mission. The two numerical analysis tools applied to the UAV wing design were developed for widely different analysis problems. The first tool, the aircraft DATCOM was developed for the preliminary design analysis of manned aircraft and will be used to perform parametric modeling and geometry optimization. The Projectile Rocket Ordinance Design and Analysis System (PRODAS®) software was developed for ballistic projectiles and will be used for 6 DOF fixed plane trajectory simulation of the developed UAV concepts. While the scale of the UAV selected does not match well with the DATCOM software, the mission requirements and analysis format of the software is advantageous.