Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Vehicle Road Runoff and Return - Effect of Limited Steering Intervention

2011-04-12
2011-01-0583
Vehicle safety remains a significant concern for consumers, government agencies, and automotive manufacturers. One critical type of vehicle accident results from the right or left side tires leaving the road surface and then returning abruptly due to large steering wheel inputs (road runoff and return). A subset of runoff road crashes that involve a steep hard shoulder has been labeled shoulder induced accidents. In this paper, a limited authority real time steering controller has been developed to mitigate shoulder induced accidents. A Kalman Filter based tire cornering stiffness estimation technique has been coupled with a feedback controller and driver intention module to create a safer driving solution without excessive intervention. In numerical studies, lateral vehicle motion improvements of 30% were realized for steering intervention. Specifically, the vehicle crossed the centerline after 1.0 second in the baseline case versus 1.3 seconds with steering assistance at 60 kph.
Journal Article

Fuzzy Logic Approach to Vehicle Stability Control of Oversteer

2011-04-12
2011-01-0268
Traditional Electronic Stability Control (ESC) for automobiles is usually accomplished through the use of estimated vehicle dynamics from simplified models that rely on parameters such as cornering stiffness that can change with the vehicle state and time. This paper proposes a different method for electronic stability control of oversteer by predicting the degree of instability in a vehicle. The algorithm is solely based on measurable response characteristics including lateral acceleration, yaw rate, speed, and driver steering input. These signals are appropriately conditioned and evaluated with fuzzy logic to determine the degree of instability present. When the “degree of instability” passes a certain threshold, the appropriate control action is applied to the vehicle in the form of differential yaw braking. Using only the measured response of the vehicle alleviates the problem of degraded performance when vehicle parameters change.
Technical Paper

Lazy Parts Indication Method: Application to Automotive Components

2011-04-12
2011-01-0428
A new approach to lightweight engineering of vehicles focuses on identifying and eliminating Lazy Parts through the application of the Lazy Parts Indication Method (LPIM). In this context, Lazy Parts are defined as components that have the potential for mass reduction for a number of reasons discussed in previous literature. The focus of this research is to apply the LPIM to an automotive component, identify potential mass savings, and redesign the component to address the laziness and begin to validate the LPIM as well at the estimated mass savings. A generator mounting bracket for a vehicle is analyzed using the LPIM and redesigned. The application of the LPIM to the generator mounting bracket predicted an estimated mass savings of 10% (0.32kg), while the actual redesign of the bracket revealed a 12% (0.38kg) mass savings.
Technical Paper

Assessment of a Safe Driving Program for Novice Operators

2013-04-08
2013-01-0441
A safe driver program has been established through a public-private partnership. This program targets novice drivers and uses a combination of classroom and in-vehicle training exercises to address critical driver errors known to lead to crashes. Students participate in four modules: braking to learn proper stopping technique, obstacle avoidance / reaction time to facilitate proper lane selection and collision avoidance, tailgating to learn about following distances, and loss of control to react appropriately when a vehicle is about to become laterally unstable. Knowledge pre and posttests are also administered at the start and end of the program. Students' in-vehicle driving performance are evaluated by instructors as well as recorded by onboard data acquisition units. The data has been evaluated with objective and subjective grading rubrics. The 70 participants in three classes used as a case study achieved an average skill score of 83.93/100.
Journal Article

A Virtual Driving Education Simulation System - Hardware and Software with Pilot Study

2013-04-08
2013-01-1407
Novice drivers are often ill-equipped to safely operate a motor vehicle due to their limited repertoire of skills and experiences. However, automotive simulation tools can be applied to better educate young drivers for a number of common driving scenarios. In this paper, the Clemson Automotive Training System (CATS) will be presented to educate and train novice drivers to safely operate four wheel passenger vehicles on paved roadways. A portable automotive simulator can be programmed to emulate a variety of high-crash rate scenarios and roadway geometries. Drivers receive instructions regarding proper driving techniques and behaviors with an opportunity to practice the given vehicle maneuver. An on-line evaluation methodology has been designed to analyze the drivers' capabilities at handling these roadway events. First, a pre-simulation questionnaire evaluates their basic understanding of everyday driving situations.
Journal Article

Design and Modeling of a Novel Internal Combustion Engine with Direct Hydraulic Power Take-off

2013-04-08
2013-01-1733
This paper introduces a Hydraulic Linear Engine (HLE) concept and describes a model to simulate instantaneous engine behavior. The United States Environmental Protection Agency has developed an HLE prototype as an evolution of their previous six-cylinder, four-stroke, free-piston engine (FPE) hardware. The HLE design extracts work hydraulically, in a fashion identical to the initial FPE, and is intended for use in a series hydraulic hybrid vehicle. Unlike the FPE, however, the HLE utilizes a crank for improved timing control and increased robustness. Preliminary experimental results show significant speed fluctuations and cylinder imbalance that require careful controls design. This paper also introduces a model of the HLE that exhibits similar behavior, making it an indispensible tool for controls design. Further, the model's behavior is evaluated over a range of operating conditions currently unobtainable by the experimental setup.
Journal Article

Effects of Material Properties on Static Load-Deflection and Vibration of a Non-Pneumatic Tire During High-Speed Rolling

2011-04-12
2011-01-0101
The Michelin Tweel tire structure has recently been developed as an innovative non-pneumatic tire which has potential for improved handling, grip, comfort, low energy loss when impacting obstacles and reduced rolling resistance when compared to a traditional pneumatic tire. One of the potential sources of vibration during rolling of a non-pneumatic tire is the buckling phenomenon and snapping back of the spokes in tension when they enter and exit the contact zone. Another source of noise was hypothesized due to a flower petal ring vibration effect due to discrete spoke interaction with the ring and contact with the ground during rolling as the spokes cycle between tension and compression. Transmission of vibration between the ground force, ring and spokes to the hub was also considered to be a significant contributor to vibration and noise characteristics of the Tweel.
Technical Paper

Development of Endurance Testing Apparatus Simulating Wheel Dynamics and Environment on Lunar Terrain

2010-04-12
2010-01-0765
This paper entails the design and development of a NASA testing system used to simulate wheel operation in a lunar environment under different loading conditions. The test system was developed to test the design of advanced nonpneumatic wheels to be used on the NASA All-Terrain Hex-Legged Extra-Terrestrial Explorer (ATHLETE). The ATHLETE, allowing for easy maneuverability around the lunar surface, provides the capability for many research and exploration opportunities on the lunar surface that were not previously possible. Each leg, having six degrees of freedom, allows the ATHLETE to accomplish many tasks not available on other extra-terrestrial exploration platforms. The robotic vehicle is expected to last longer than previous lunar rovers.
Technical Paper

Design of an Open-Loop Steering Robot Profile for Double Lane Change Maneuver Using Simulation

2010-04-12
2010-01-0096
This paper presents a methodology for designing a simple open-loop steering robot profile to simulate a double lane change maneuver for track testing of a heavy tractor/trailer combination vehicle. For track testing of vehicles in a lane change type of maneuver, a human driver is typically used with a desired path defined with visual cues such as traffic cones. Such tests have been shown to result in poor test repeatability due to natural variation in driver steering behavior. While a steering robot may be used to overcome this repeatability issue, such a robot typically implements open-loop maneuvers and cannot be guaranteed to cause the vehicle to accurately follow a pre-determined trajectory. This paper presents a method using offline simulation to design an open-loop steering maneuver resulting in a realistic approximation of a double lane change maneuver.
Journal Article

Modeling and Simulation of a Series Hybrid CNG Vehicle

2014-04-01
2014-01-1802
Predicting fuel economy during early stages of concept development or feasibility study for a new type of powertrain configuration is an important key factor that might affect the powertrain configuration decision to meet CAFE standards. In this paper an efficient model has been built in order to evaluate the fuel economy for a new type of charge sustaining series hybrid vehicle that uses a Genset assembly (small 2 cylinders CNG fueled engine coupled with a generator). A first order mathematical model for a Li-Ion polymer battery is presented based on actual charging /discharging datasheet. Since the Genset performance data is not available, normalized engine variables method is used to create powertrain performance maps. An Equivalent Consumption Minimization Strategy (ECMS) has been implemented to determine how much power is supplied to the electric motor from the battery and the Genset.
Technical Paper

A Smart Jersey Highway Barrier with Portal for Small Animal Passage and Driver Alert

2013-04-08
2013-01-0620
Barriers are commonly used on roadways to separate and to protect against vehicles traveling in opposing directions from possible head-on collisions. However, these barriers may interfere with wildlife passage such that animals become trapped on the road. Typically, small animals cannot find safe passage across all traffic lanes due to the presence of solid barriers and eventually die after being hit by a vehicle. The occurrence of animal-to-vehicle collisions also presents a dangerous scenario for motorists as a driver may intuitively swerve to avoid hitting the animal. In this paper, a redesigned Jersey style barrier, named the Clemson smart portal, will be presented and discussed. This roadway barrier features a portal for small animal travel, along with a mechatronic-based warning system to notify drivers of animal passage.
Technical Paper

Evaluation of an Automotive Simulator Based Driver Safety Training Program for Run-Off-the-Road and Recovery

2013-04-08
2013-01-1260
Despite the growing acceptance of driver education programs, there remains a class of unpredictable and dangerous vehicle situations for which very little training or education is offered. Included in this list is a condition called run-off-the-road (ROR) which occurs when the wheels of the vehicle leave the paved surface of the road and begin to travel on the lower friction surfaces of the shoulder or side of the road. Unsuccessful recovery from ROR contributes to an overwhelming percentage of motorized vehicle crash fatalities and injuries. Most present solutions involve roadway infrastructure management and driver assistance systems. While these solutions have contributed varying amounts of success to the ROR problem, they remain limited as they do not directly address the critical cause of ROR crashes which is driver performance errors.
Technical Paper

A Robust CFD Methodology for Physically Realistic and Economically Feasible Results in Racing - Part V: Exhaust-Valve Region Flow

2006-04-03
2006-01-1592
Part V of this five-part paper investigates the flow field and the total pressure loss mechanisms for three valve lifts in the exhaust region of a V8 racecar engine using the robust, systematic computational methodology described in Part I. The replica of the engine geometry includes a cylinder, detailed combustion chamber, exhaust valve, valve seat, port, and “exhaust pipe”. A set of fully-converged and grid-independent solutions for the steady, time-averaged (or RANS), non-linear Navier-Stokes equations are obtained using dense and high quality grids, involving 2.1∼3.0 finite volumes, and unusually strict convergence criteria. Turbulence closure is attained via the realizable k-ε (RKE) model used in conjunction with the non-equilibrium wall function near-wall treatment. The validation presented in Part I showed that flow rate results from the “blind simulations” agree well with the experimental measurements.
Technical Paper

Advanced Thermal Management for Internal Combustion Engines - Valve Design, Component Testing and Block Redesign

2006-04-03
2006-01-1232
Advanced engine cooling systems can enhance the combustion environment, increase fuel efficiency, and reduce tailpipe emissions with less parasitic engine load. The introduction of computer controlled electro-mechanical valves, radiator fans, and coolant pumps require mathematic models and real time algorithms to implement intelligent thermal control strategies for prescribed engine temperature tracking. Smart butterfly valves can replace the traditional wax-based thermostat to control the coolant flow based on both engine temperature and operating conditions. The electric water pump and radiator fan replace the mechanically driven components to reduce unnecessary engine loads at high speeds and provide better cooling at low speeds.
Technical Paper

Characterization of a Multiple-Evaporator Capillary Pumped Loop

2005-07-11
2005-01-2884
The current work addresses efforts to characterize multiple-evaporator capillary pumped loops. Both experimental and analytical approaches were used to predict performance of parallel evaporators and corresponding effects from adjacent operating evaporators. The effects of low and high power dissipation and the distribution of powers among the evaporators were tested. Additionally, a pressure balance model is given where the maximum heat transfer capacity for an evaporator operating under a multi-evaporator condition is determined based on pressure distribution throughout the loop. The model and experiment comparisons demonstrated how the heat load distribution among evaporators affects the maximum capillary limit for individual evaporators operating in a multiple evaporator mode.
Technical Paper

Development of New Turbulence Models and Computational Methods for Automotive Aerodynamics and Heat Transfer

2008-12-02
2008-01-2999
This paper is a review of turbulence models and computational methods that have been produced at Clemson University's Advanced Computational Research Laboratory. The goal of the turbulence model development has been to create physics-based models that are economically feasible and can be used in a competitive environment, where turnaround time is a critical factor. Given this goal, all of the work has been focused on Reynolds-Averaged Navier-Stokes (RANS) simulations in the eddy-viscosity framework with the majority of the turbulence models having three transport equations in addition to mass, momentum, and energy. Several areas have been targeted for improvement in turbulence modeling for complex flows such as those found in motorsports aerodynamics: the effects of streamline curvature and rotation on the turbulence field, laminar-turbulent transition, and separated shear layer rollup and breakdown.
Technical Paper

A User Configurable Powertrain Controller with Open Software Management

2007-04-16
2007-01-1601
The emphasis on vehicle fuel economy and tailpipe emissions, coupled with a trend toward greater system functionally, has prompted automotive engineers to develop on-board control systems with increased requirements and complexity. Mainstream engine controllers regulate fuel, spark, and other subsystems using custom solutions that incorporate off-the-shelf hardware components. Although the digital processor core and the peripheral electronics may be similar, these controllers are targeted to fixed engine architectures which limit their flexibility across vehicle platforms. Moreover, additional software needs are emerging as electronics continue to permeate the ground transportation sector. Thus, automotive controllers will be required to assume increased responsibility while effectively communicating with distributed hardware modules.
Journal Article

Automotive Driving Simulators: Research, Education, and Entertainment

2009-04-20
2009-01-0533
Automotive simulators offer an immersive environment to operate vehicle systems in a safe and repeatable manner. A fundamental question exists regarding their effectiveness for an identified task. For instance, driving simulators can play a significant role in evaluating vehicle designs, developing safety regulations, supporting human factors engineering research, administering driver training and education, and offering individual entertainment. Some of the driving simulator technology users include automotive manufacturers and suppliers, research laboratories at universities and government agencies, driver education and training programs, and motorsports and racing entertainment venues. In each case, the simulator capabilities and functionality must encompass the expectations of the driver to permit their perception of realistic scenarios for evaluation. This paper investigates three driving simulators in terms of their hardware and software, as well as their applications.
Technical Paper

Design of a Scaled Off-Vehicle Wheel Testing Device for Textile Tread Wear

2009-04-20
2009-01-0562
This paper describes the development of test equipment for determining the wear viability of various lunar wheel tread materials with service lives of up to ten years and 10,000 km. The problem is defined, and concepts are proposed, evaluated, and selected. An abrasive turntable is chosen for simplicity and accuracy of modeling the original wheel configuration. Additionally, the limitations of the test are identified, such as the sensitivity to off-vertical loading, and future work is projected in order to more effectively continue testing. Finally, this paper presents the challenges of collaborative research effort between an undergraduate research team and industry, with government lab representatives as customers
Technical Paper

Bonding Strength Modeling of Polyurethane to Vulcanized Rubber

2009-04-20
2009-01-0605
Tires manufactured from polyurethane (PU) have been espoused recently for reduced hysteretic loss, but the material provides poor traction or poor wear resistance in the application, requiring inclusion of a traditional vulcanized rubber tread at the contact surface. The tread can be attached by adhesive methods after the PU body is cured, or the PU can be directly cured to reception sites on the rubber chain molecules unoccupied by crosslinked (vulcanizing) sulfur atoms. This paper provides a study of the two bonding options, both as-manufactured and after dynamic loading representative of tire performance in service. Models of each process are introduced, and an experimental comparison of the bonding strength between each method is made. Results are applied to tire fatigue simulation.
X