Refine Your Search

Topic

Author

Affiliation

Search Results

Video

HD OBD Challenges 2010 Experience to Help Launch 2013

2012-01-30
The development and release process for Cummins first US HD OBD certified product encountered numerous hurdles. Beyond the purely "technical" difficulties, there were also challenges related to our product development processes. This presentation provides recommendations for HD OBD product development processes & improvements. Topics will include: Training needs for program management, Performance tuning strategies vs. OBD needs, Planning for post-certification product changes, etc. Presenter Greg Moore, Cummins Inc.
Journal Article

Empirical Modeling of Transient Emissions and Transient Response for Transient Optimization

2009-04-20
2009-01-1508
Empirical models for engine-out oxides of Nitrogen (NOx) and smoke emissions have been developed for the purpose of minimizing transient emissions while maintaining transient response. Three major issues have been addressed: data acquisition, data processing and modeling method. Real and virtual transient parameters have been identified for acquisition. Accounting for the phase shift between transient engine events and transient emission measurements has been shown to be very important to the quality of model predictions. Several methods have been employed to account for the transient transport delays and sensor lags which constitute the phase shift. Finally several different empirical modeling methods have been used to determine the most suitable modeling method for transient emissions. These modeling methods include several kinds of neural networks, global regression and localized regression.
Journal Article

Meeting the US Heavy-Duty EPA 2010 Standards and Providing Increased Value for the Customer

2010-10-05
2010-01-1934
The paper will discuss the design and development of heavy-duty diesel engines to meet the US EPA 2010 on-highway standards - 0.2 g/HP-hr NOx and 0.01 g/HP-hr particulate matter (PM). In meeting these standards a combination of in-cylinder control and aftertreatment control for both NOx and particulate has been used. For NOx control, a combination of cooled exhaust gas recirculation (EGR) and selective catalytic reduction (SCR) is used. The SCR catalyst uses copper zeolite to achieve high levels of NOx conversion efficiency with minimal ammonia slip and unparalleled thermal durability. For particulate control, a diesel particulate filter (DPF) with upstream oxidation catalyst (DOC) is used. While the DPF may be actively regenerated when required, it operates predominantly with passive regeneration - enabled by the high NOx levels between the engine and the DPF, associated with high efficiency SCR systems and NO₂ production across the DOC.
Journal Article

1000-Hour Durability Evaluation of a Prototype 2007 Diesel Engine with Aftertreatment Using B20 Biodiesel Fuel

2009-11-02
2009-01-2803
A prototype 2007 ISL Cummins diesel engine equipped with a diesel oxidation catalyst (DOC), diesel particle filter (DPF), variable geometry turbocharger (VGT), and cooled exhaust gas recirculation (EGR) was tested at Southwest Research Institute (SwRI) under a high-load accelerated durability cycle for 1000 hours with B20 soy-based biodiesel blends and ultra-low sulfur diesel (ULSD) fuel to determine the impact of B20 on engine durability, performance, emissions, and fuel consumption. At the completion of the 1000-hour test, a thorough engine teardown evaluation of the overhead, power transfer, cylinder, cooling, lube, air handling, gaskets, aftertreatment, and fuel system parts was performed. The engine operated successfully with no biodiesel-related failures. Results indicate that engine performance was essentially the same when tested at 125 and 1000 hours of accumulated durability operation.
Journal Article

Why Cu- and Fe-Zeolite SCR Catalysts Behave Differently At Low Temperatures

2010-04-12
2010-01-1182
Cu- and Fe-zeolite SCR catalysts emerged in recent years as the primary candidates for meeting the increasingly stringent lean exhaust emission regulations, due to their outstanding activity and durability characteristics. It is commonly known that Cu-zeolite catalysts possess superior activity to Fe-zeolites, in particular at low temperatures and sub-optimal NO₂/NOx ratios. In this work, we elucidate some underlying mechanistic differences between these two classes of catalysts, first based on their NO oxidation abilities, and then based on the relative properties of the two types of exchanged metal sites. Finally, by using the ammonia coverage-dependent NOx performance, we illustrate that state-of-the-art Fe-zeolites can perform better under certain transient conditions than in steady-state.
Journal Article

Characteristics of Ion Current Signals in Compression Ignition and Spark Ignition Engines

2010-04-12
2010-01-0567
Ion current sensors have been considered for the feedback electronic control of gasoline and diesel engines and for onboard vehicles powered by both engines, while operating on their conventional cycles or on the HCCI mode. The characteristics of the ion current signal depend on the progression of the combustion process and the properties of the combustion products in each engine. There are large differences in the properties of the combustible mixture, ignition process and combustion in both engines, when they operate on their conventional cycles. In SI engines, the charge is homogeneous with an equivalence ratio close to unity, ignition is initiated by an electric spark and combustion is through a flame propagating from the spark plug into the rest of the charge.
Journal Article

Gear Train Mesh Efficiency Study: The Effects of an Anti-Backlash Gear

2014-04-01
2014-01-1769
In recent years, the focus on engine parasitic losses has increased as a result of the efforts to increase engine efficiency and reduce greenhouse gasses. The engine gear train, used to time the valve system and drive auxiliary loads, contributes to the overall engine parasitic losses. Anti-backlash gears are often used in engine gear trains to reduce gear rattle noise resulting from the torsional excitation of the gear train by the engine output torque. Friction between sliding surfaces at the gear tooth is a major source of power loss in gear trains. The effect of using anti-backlash gears on the gear friction power loss is not well known. As a part of the effort to reduce parasitic losses, the increase in friction power loss in the Cummins ISX 15 gear train due to the anti-backlash gear was quantitatively determined by modifying the methods given in ISO 14179-2 to fit the anti-backlash gear sub-assembly.
Journal Article

Systematic Development of Highly Efficient and Clean Engines to Meet Future Commercial Vehicle Greenhouse Gas Regulations

2013-09-24
2013-01-2421
With increasing energy prices and concerns about the environmental impact of greenhouse gas (GHG) emissions, a growing number of national governments are putting emphasis on improving the energy efficiency of the equipment employed throughout their transportation systems. Within the U.S. transportation sector, energy use in commercial vehicles has been increasing at a faster rate than that of automobiles. A 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected from 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. and global economies.
Journal Article

Diesel Engine Technologies Enabling Powertrain Optimization to Meet U.S. Greenhouse Gas Emissions

2013-09-08
2013-24-0094
The world-wide commercial vehicle industry is faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. This work focuses on the new U.S. regulation of greenhouse gas (GHG) emissions from commercial vehicles and diesel engines and the most likely technologies to meet future anticipated standards while improving transportation freight efficiency. In the U.S., EPA and NHTSA have issued a joint proposed GHG rule that sets limits for CO2 and other GHGs from pick-up trucks and vans, vocational vehicles, semi-tractors, and heavy duty diesel engines. This paper discusses and compares different technologies to meet GHG regulations for diesel engines based on considerations of cost, complexity, real-world fidelity, and environmental benefit.
Journal Article

Simulation of Organic Rankine Cycle Power Generation with Exhaust Heat Recovery from a 15 liter Diesel Engine

2015-04-14
2015-01-0339
The performance of an organic Rankine cycle (ORC) that recovers heat from the exhaust of a heavy-duty diesel engine was simulated. The work was an extension of a prior study that simulated the performance of an experimental ORC system developed and tested at Oak Ridge National laboratory (ORNL). The experimental data were used to set model parameters and validate the results of that simulation. For the current study the model was adapted to consider a 15 liter turbocharged engine versus the original 1.9 liter light-duty automotive turbodiesel studied by ORNL. Exhaust flow rate and temperature data for the heavy-duty engine were obtained from Southwest Research Institute (SwRI) for a range of steady-state engine speeds and loads without EGR. Because of the considerably higher exhaust gas flow rates of the heavy-duty engine, relative to the engine tested by ORNL, a different heat exchanger type was considered in order to keep exhaust pressure drop within practical bounds.
Journal Article

Validation and Design of Heavy Vehicle Cooling System with Waste Heat Recovery Condenser

2014-09-30
2014-01-2339
Fuel efficiency for tractor/trailer combinations continues to be a key area of focus for manufacturers and suppliers in the commercial vehicle industry. Improved fuel economy of vehicles in transit can be achieved through reductions in aerodynamic drag, tire rolling resistance, and driveline losses. Fuel economy can also be increased by improving the efficiency of the thermal to mechanical energy conversion of the engine. One specific approach to improving the thermal efficiency of the engine is to implement a waste heat recovery (WHR) system that captures engine exhaust heat and converts this heat into useful mechanical power through use of a power fluid turbine expander. Several heat exchangers are required for this Rankine-based WHR system to collect and reject the waste heat before and after the turbine expander. The WHR condenser, which is the heat rejection component of this system, can be an additional part of the front-end cooling module.
Technical Paper

Optimal Energy Management Strategy for Energy Efficiency Improvement and Pollutant Emissions Mitigation in a Range-Extender Electric Vehicle

2021-09-05
2021-24-0103
The definition of the energy management strategy for a hybrid electric vehicle is a key element to ensure maximum energy efficiency. The ability to optimally manage the on-board energy sources, i.e., fuel and electricity, greatly affects the final energy consumption of hybrid powertrains. In the case of plug-in series-hybrid architectures, such as Range-Extender Electric Vehicles (REEVs), fuel efficiency optimization alone can result in a stressful operation of the range-extender engine with an excessively high number of start/stops. Nonetheless, reducing the number of start/stops can lead to long periods in which the engine is off, resulting in the after-treatment system temperature to drop and higher emissions to be produced at the next engine start.
Technical Paper

Thermo-Mechanical Fatigue and Press-Fit Loss Analysis of Valve Seat Insert

2021-09-22
2021-26-0338
Valve seat inserts (VSI) are installed in cylinder heads to provide a seating surface for poppet valves. Insert material is more heat and wear resistant than the base cylinder head material and hence it makes them better suited for valve seating and improved engine durability. Also use of inserts permits easier repair or rebuild of cylinder heads as only the wear surfaces need to be replaced. Desirable performance characteristics are appropriate sealing, heat-transfer and minimizing valve’s seating face to VSI wear and undesired outputs include valve seat dropping and cracking. With the downsizing trend of diesel engines, it leads to increasing power density and therefore higher cylinder pressure and temperatures. Hence the engine components are getting exposed to more severe loadings and hence to damage modes, which were heretofore not experienced. Among such possible damage modes are insert’s yielding and corresponding press-fit loss leading to either it’s cracking or drop-out.
Technical Paper

Engine Mounted Oil Cooler 3D CFD CHT Analysis for Predicting Thermal Performance

2021-09-22
2021-26-0351
This paper describes steady state, computationally rigorous, three-dimensional conjugate heat transfer 3D CFD analysis of an oil cooler. Thermal performance of an oil cooler is very significant from engine oil consumption, bearings performance etc. In an engine water jacket, coolant flows around and through the oil cooler making the flow three dimensional. Therefore, demanding the need of a 3D CFD analysis for capturing all the flow and heat transfer aspects and thereby accurate prediction of thermal performance. An oil cooler contains intricate turbulators in flow paths and have dimensions varying from as small as 0.25 mm to as large as 350 mm, therefore making the meshing and solution a formidable task. In current work an oil cooler with all the intricate details is modelled in a commercial CFD code. Objective is to develop a solution approach which can predict thermal performance of an oil cooler in an accurate way.
Journal Article

Modeling Approach to Estimate EGR Cooler Thermal Fatigue Life

2015-04-14
2015-01-1654
Cooled EGR continues to be a key technology to meet emission regulations, with EGR coolers performing a critical role in the EGR system. Designing EGR coolers that reliably manage thermal loads is a challenge with thermal fatigue being a top concern. The ability to estimate EGR cooler thermal fatigue life early in the product design and validation cycle allows for robust designs that meet engine component reliability requirements and customer expectations. This paper describes a process to create an EGR cooler thermal fatigue life model. Components which make up the EGR cooler have differing thermal responses, consequently conjugate transient CFD must be used to accurately model metal temperatures during heating and cooling cycles. Those metal temperatures are then imported into FEA software for structural analysis. Results from both the CFD and FEA are then used in a simplified numerical model to estimate the virtual strain of the EGR cooler.
Journal Article

Perception of Diesel Engine Gear Rattle Noise

2015-06-15
2015-01-2333
Component sound quality is an important factor in the design of competitive diesel engines. One component noise that causes complaints is the gear rattle that originates in the front-of-engine gear train which drives the fuel pump and other accessories. The rattle is caused by repeated tooth impacts resulting from fluctuations in differential torsional acceleration of the driving gears. These impacts generate a broadband, impulsive noise that is often perceived as annoying. In most previous work, the overall sound quality of diesel engines has been considered without specifically focusing on predicting the perception of gear rattle. Gear rattle level has been quantified based on angular acceleration measurements, but those measurements can be difficult to perform. Here, the emphasis was on developing a metric based on subjective testing of the perception of gear rattle.
Journal Article

An Engine and Powertrain Mapping Approach for Simulation of Vehicle CO2 Emissions

2015-09-29
2015-01-2777
Simulations used to estimate carbon dioxide (CO2) emissions and fuel consumption of medium- and heavy-duty vehicles over prescribed drive cycles often employ engine fuel maps consisting of engine measurements at numerous steady-state operating conditions. However, simulating the engine in this way has limitations as engine controls become more complex, particularly when attempting to use steady-state measurements to represent transient operation. This paper explores an alternative approach to vehicle simulation that uses a “cycle average” engine map rather than a steady state engine fuel map. The map contains engine CO2 values measured on an engine dynamometer on cycles derived from vehicle drive cycles for a range of generic vehicles. A similar cycle average mapping approach is developed for a powertrain (engine and transmission) in order to show the specific CO2 improvements due to powertrain optimization that would not be recognized in other approaches.
Journal Article

Analytic Solution for the Flow Distribution and Pressure Drop of Ceramic Partially-Plugged Wall Flow Diesel Particulate Filters

2015-04-14
2015-01-1056
A 1-dimensional analytic solution has been developed to evaluate the pressure drop and filtration performance of ceramic wall-flow partial diesel particulate filters (PFs). An axially resolved mathematical model for the static pressure and velocity profiles prevailing inside wall-flow filters, with such unique plugging configurations, is being proposed for the first time. So far, the PF models that have been developed are either iterative/numerical in nature [1], or based on commercial CFD packages [7]. In comparison, an analytic solution approach is a transparent and computationally inexpensive tool that is capable of accurately predicting trends as well as, offering explanations to fundamental performance behavior. The simple mathematical expressions that have been obtained facilitate rational decision-making when designing partial filters, and could also reduce the complexity of OBD logic necessary to control onboard filter performance.
Journal Article

Experimental and Modeling Study of Ash Impact on DPF Backpressure and Regeneration Behaviors

2015-04-14
2015-01-1063
One field-returned DPF loaded with a high amount of ash is examined using experimental and modeling approaches. The ash-related design factors are collected by coupling the inspection results from terahertz spectroscopy with a calibrated DPF model. The obtained ash packing density, ash layer permeability and ash distribution profile are then used in the simulation to assess the ash impact on DPF backpressure and regeneration behaviors. The following features have been observed during the simulation: 1 The ash packing density, ash layer permeability and ash distribution profile should be collected at the same time to ensure the accurate prediction of ash impact on DPF backpressure. Missing one ash property could mislead the measurement of the other two parameters and thus affects the DPF backpressure estimation. 2 The ash buildup would gradually increase the frequency for the backpressure-based active soot regeneration.
Journal Article

Piston Cooling Nozzle Oil Jet Evaluation Using CFD and a High Speed Camera

2016-09-27
2016-01-8100
Piston cooling nozzles/jets play several crucial roles in the power cylinder of an internal combustion engine. Primarily, they help with the thermal management of the piston and provide lubrication to the cylinder liner and the piston’s wrist pin. In order to evaluate the oil jet characteristics from various piston cooling nozzle (PCN) designs, a quantitative and objective process was developed. The PCN characterization began with a computational fluid dynamics (CFD) turbulent model to analyze the mean oil velocity and flow distribution at the nozzle exit/tip. Subsequently, the PCN was tested on a rig for a given oil temperature and pressure. A high-speed camera captured images at 2500 frames per second to observe the evolution of the oil stream as a function of distance from the nozzle exit. An algorithm comprised of standard digital image processing techniques was created to calculate the oil jet width and density.
X