Refine Your Search

Topic

Author

Search Results

Journal Article

Meeting the US Heavy-Duty EPA 2010 Standards and Providing Increased Value for the Customer

2010-10-05
2010-01-1934
The paper will discuss the design and development of heavy-duty diesel engines to meet the US EPA 2010 on-highway standards - 0.2 g/HP-hr NOx and 0.01 g/HP-hr particulate matter (PM). In meeting these standards a combination of in-cylinder control and aftertreatment control for both NOx and particulate has been used. For NOx control, a combination of cooled exhaust gas recirculation (EGR) and selective catalytic reduction (SCR) is used. The SCR catalyst uses copper zeolite to achieve high levels of NOx conversion efficiency with minimal ammonia slip and unparalleled thermal durability. For particulate control, a diesel particulate filter (DPF) with upstream oxidation catalyst (DOC) is used. While the DPF may be actively regenerated when required, it operates predominantly with passive regeneration - enabled by the high NOx levels between the engine and the DPF, associated with high efficiency SCR systems and NO₂ production across the DOC.
Technical Paper

Combination of Mixed Metal Oxides with Cu-Zeolite for Enhanced Soot Oxidation on an SCRoF

2021-09-05
2021-24-0071
A push for more stringent emissions regulations has resulted in larger, increasingly complex aftertreatment solutions. In particular, oxides of nitrogen (NOX) and particulate matter (PM) have been controlled using two separate systems, selective catalytic reduction (SCR) and the catalyze diesel particulate filter (CDPF), or the functionality has been combined into a single device producing the SCR on filter (SCRoF). The SCRoF forgoes beneficial NO2 production present in the CDPF to avoid NH3 oxidation which occurs when using platinum group metals (PGM) for oxidation. In this study, mixed-metal oxides are shown to oxidize NO to NO2 without appreciable NH3 oxidation. This selectivity leads to enhanced performance when combined with a typical Cu-zeolite catalyst.
Journal Article

Analytic Solution for the Flow Distribution and Pressure Drop of Ceramic Partially-Plugged Wall Flow Diesel Particulate Filters

2015-04-14
2015-01-1056
A 1-dimensional analytic solution has been developed to evaluate the pressure drop and filtration performance of ceramic wall-flow partial diesel particulate filters (PFs). An axially resolved mathematical model for the static pressure and velocity profiles prevailing inside wall-flow filters, with such unique plugging configurations, is being proposed for the first time. So far, the PF models that have been developed are either iterative/numerical in nature [1], or based on commercial CFD packages [7]. In comparison, an analytic solution approach is a transparent and computationally inexpensive tool that is capable of accurately predicting trends as well as, offering explanations to fundamental performance behavior. The simple mathematical expressions that have been obtained facilitate rational decision-making when designing partial filters, and could also reduce the complexity of OBD logic necessary to control onboard filter performance.
Journal Article

Solid Particle Emissions from Vehicle Exhaust during Engine Start-Up

2015-04-14
2015-01-1077
Human exposure to vehicle exhaust during engine start-up can be encountered on a daily basis in parking lots, home garages, and vehicle stop/star traffic environment. This work is the first pilot study to characterize solid particle number and size distribution during engine start-up using various light-duty vehicles with different technology engines. A total of 84 vehicles were tested in this pilot study, consisting of post-2007 diesel engines equipped with high efficiency diesel particulate filters (DPFs) as well as modern gasoline port fuel injected (PFI) and gasoline direct injected (GDI) engines equipped with three-way-catalysts (TWCs). Particle concentration from DPF equipped diesel engines were found to be the lowest, while GDI and 8-cylinder PFI engines had the highest particle emissions.
Journal Article

Extension of Analytical Methods for Detailed Characterization of Advanced Combustion Engine Emissions

2016-10-17
2016-01-2330
Advanced combustion strategies used to improve efficiency, emissions, and performance in internal combustion engines (IC) alter the chemical composition of engine-out emissions. The characterization of exhaust chemistry from advanced IC engines requires an analytical system capable of measuring a wide range of compounds. For many years, the widely accepted Coordinating Research Council (CRC) Auto/Oil procedure[1,2] has been used to quantify hydrocarbon compounds between C1 and C12 from dilute engine exhaust in Tedlar polyvinyl fluoride (PVF) bags. Hydrocarbons greater than C12+ present the greatest challenge for identification in diesel exhaust. Above C12, PVF bags risk losing the higher molecular weight compounds due to adsorption to the walls of the bag or by condensation of the heavier compounds. This paper describes two specialized exhaust gas sampling and analytical systems capable of analyzing the mid-range (C10 - C24) and the high range (C24+) hydrocarbon in exhaust.
Technical Paper

Evaluation of an On-Board, Real-Time Electronic Particulate Matter Sensor Using Heavy-Duty On-Highway Diesel Engine Platform

2020-04-14
2020-01-0385
California Air Resources Board (CARB) has instituted requirements for on-board diagnostics (OBD) that makes a spark-plug sized exhaust particulate matter (PM) sensor a critical component of the OBD system to detect diesel particulate filter (DPF) failure. Currently, non-real-time resistive-type sensors are used by engine OEMs onboard vehicles. Future OBD regulations are likely to lower PM OBD thresholds requiring higher sensitivity sensors with better data yield for OBD decision making. The focus of this work was on the experimental evaluation of a real-time PM sensor manufactured by EmiSense Technologies, LLC that may offer such benefits. A 2011 model year on-highway heavy-duty diesel engine fitted with a diesel oxidation catalyst (DOC) and a catalyzed DPF followed by urea-based selective catalytic reducer (SCR) and ammonia oxidation (AMOX) catalysts was used for this program.
Technical Paper

Development of a Burner-Based Test System to Produce Controllable Particulate Emissions for Evaluation of Gasoline Particulate Filters

2020-04-14
2020-01-0389
Gasoline Direct Injection (GDI) engines have been widely adopted by manufacturers in the light-duty market due to their fuel economy benefits. However, several studies have shown that GDI engines generate higher levels of particulate matter (PM) emissions relative to port fuel injected (PFI) engines and diesel engines equipped with optimally functioning diesel particulate filters (DPF). With stringent particle number (PN) regulations being implemented in both, the European Union and China, gasoline particulate filters (GPF) are expected to be widely utilized to control particulate emissions. Currently, evaluating GPF technologies on a vehicle can be challenging due to a limited number of commercially available vehicles that are calibrated for a GPF in the United States as well as the costs associated with vehicle procurement and evaluations utilizing a chassis dynamometer facility.
Journal Article

Diesel Particulate Filter System - Effect of Critical Variables on the Regeneration Strategy Development and Optimization

2008-04-14
2008-01-0329
Regeneration of diesel particulate filters poses major challenges in developing the particulate matter emission control technology to meet EPA 2007/2010 emissions regulations. The problem areas are multifold due to the complexity involved in designing the filter system, developing regeneration strategies and controlling the regeneration process. This paper discusses the need for active regeneration systems. It also addresses several key limitations and trade-offs between the regeneration strategy, chemical kinetics, exhaust gas temperature and the regeneration efficiency. Passive regeneration of diesel particulate filter systems is known to be highly dependent on the engine-out [NOx/PM] ratio as well as exhaust temperature over the duty cycle. Using catalytic oxidation of auxiliary fuel injected into the system, the exhaust gas temperature can be successfully enhanced for filter regeneration.
Journal Article

Measurement of Dioxin and Furan Emissions during Transient and Multi-Mode Engine Operation

2011-04-12
2011-01-1158
This study analyzed the impact of transient and multi-mode engine conditions on emissions of dioxins and furans from a variety of diesel aftertreatment configurations. Exhaust aftertreatment systems included combinations of diesel oxidation catalyst, diesel particulate filter, and either Cu/zeolite or Fe/zeolite selective catalytic reduction catalyst. EPA method TO-9A was modified for proportional exhaust gas sampling, whereas EPA method 0023A was modified for raw exhaust gas sampling. Dioxin and furan emissions were first measured with modified method TO-9A during Federal Test Procedure transient cycles, but no toxic dioxins or furans were detected. Measurements were then taken with modified method 0023A during Ramped Mode Cycles-Supplemental Emissions Test experiments. Because more rigorous pre-cleaning and sample extraction procedures were used with this method and lower detection limits were achieved by the analytical laboratory, some dioxin and furan congeners were detected.
Journal Article

Diesel Cold-Start Emission Control Research for 2015-2025 LEV III Emissions

2013-04-08
2013-01-1301
The diesel engine can be an effective solution to meet future greenhouse gas and fuel economy standards, especially for larger segment vehicles. However, a key challenge facing the diesel is the upcoming LEV III emissions standard which will require significant reductions of hydrocarbon (HC) and oxides of nitrogen (NOx) from current levels. The challenge stems from the fact that diesel exhaust temperatures are much lower than gasoline engines so the time required to achieve effective emissions control with current aftertreatment devices is considerably longer. The objective of this study was to determine the potential of a novel diesel cold-start emissions control strategy for achieving LEV III emissions. The strategy combines several technologies to reduce HC and NOx emissions before the start of the second hill of the FTP75.
Technical Paper

Validation Method for Diesel Particulate Filter Durability

2007-10-29
2007-01-4086
The diesel particulate filter (DPF) is a critical aftertreatment device for control of particulate matter (PM) emissions from a diesel engine. DPF survivability is challenged by several key factors such as: excessive thermal stress due to DPF runaway regenerations (or uncontrolled regeneration) may cause DPF substrate and washcoat failure. Catalyst poisoning elements from the diesel fuel and engine oil may cause performance degradation of the catalyzed DPF. Harsh vibration from the powertrain, as well as from the road surface, may lead to mechanical failure of the substrate and/or the matting material. Evaluations of these important validation parameters were performed.
Technical Paper

The Use of Radioactive Tracer Technology to Measure Real-Time Wear in Engines and Other Mechanical Systems

2007-04-16
2007-01-1437
Radioactive tracer technology (RATT™) is an important tool for measuring real-time wear in operating engines and other mechanical systems. The use of this technology provides important wear information that is not available by other, more conventional wear measurement methods. The technology has advanced to the point where several components can be interrogated simultaneously, and new methods have extended the method to materials that are normally not amenable to radioactive tracer evaluation. In addition, sensitivity has increased so that the onset of wear can be detected long before practical with non-tracer methods. This improves the ability to measure and determine cause and effect relationships, thus providing a better understanding of wear responses to specific operating conditions and to changes in operating conditions. This paper reviews the radioactive tracer process and recent improvements that have extended its reach in both automotive and non-automotive applications.
Technical Paper

Diesel Exhaust Particulate Sampler for On-board PM Measurement

2008-04-14
2008-01-1180
Horiba on-board diesel exhaust particulate sampler (OBS-PM) is a filter based partial flow particulate sampling system used for On-board diesel particulate matter (PM) measurement. It takes sample from either raw or diluted exhaust. It can run at constant dilution ratios or at variable dilution ratios with proportional control on the sample flow. The diluted exhaust moves through a pre-weighed 47 mm particulate filter and PM is collected on the filter. By weighing the loaded sample filter, PM emission from the engine or the vehicle can be determined. The performance of the OBS-PM meets most of requirements for a real-time partial flow sample system (PFSS) recommended by ISO 16183 [2]. The physical size and the power consumption of the instrument are minimized. It is powered with four 12 volts batteries, and can be installed on a vehicle for real-world PM emission evaluation.
Technical Paper

Portable Emissions Measurement for Retrofit Applications – The Beijing Bus Retrofit Experience

2008-06-23
2008-01-1825
In 2005, the United States Environmental Protection Agency (EPA) and Southwest Research Institute (SwRI) embarked on a mission to help the city of Beijing, China, clean its air. Working with the Beijing Environmental Protection Bureau (BEPB), the effort was a pilot diesel retrofit demonstration program involving three basic retrofit technologies to reduce particulate matter (PM). The three basic technologies were the diesel oxidation catalyst (DOC), the flowthrough diesel particulate filter (FT-DPF), and the wallflow diesel particulate filter (WF-DPF). The specific retrofit systems selected for the project were verified through the California Air Resources Board (CARB) or the EPA verification protocol [1]. These technologies are generally verified for PM reductions of 20-40 percent for DOCs, 40-50 percent for the FT-DPF, and 85 percent or more for the high efficiency WF-DPF.
Technical Paper

A Review of Diesel Particulate Filter Technologies

2003-06-23
2003-01-2303
Diesel particulate filters (DPF), known as traps in the mid-to late 1970s, were being developed for on-highway diesel applications. However, advanced engine design and in-cylinder engineering enabled diesel engines and vehicles to meet extremely low emission limits, including those of particulate matter (PM) without the need for DPF's or other auxiliary emission control devices. Late in 2000, the US EPA finalized its on-highway heavy-duty diesel emission standards, thus ending speculations regarding its stringency and establishing the lowest limits ever. The new nitric oxides (NOX) and PM limits are seen as technology-forcing. For NOX emissions, the debate rages on among the technical community about the merits of NOX adsorbers and urea selective catalytic reduction. On the other hand, there seems to be little doubt about DPF's as the technical solution for PM.
Technical Paper

Achieving Tier 2 Bin 5 Emission Levels with a Medium Duty Diesel Pick-Up and a NOX Adsorber, Diesel Particulate Filter Emissions System-Exhaust Gas Temperature Management

2004-03-08
2004-01-0584
Increasing fuel costs and the desire for reduced dependence on foreign oil has brought the diesel engine to the forefront of future medium-duty vehicle applications in the United States due to its higher thermal efficiency and superior durability. The main obstacle to the increased use of diesel engines in this platform is the upcoming extremely stringent, Tier 2 emission standard. In order to succeed, diesel vehicles must comply with emissions standards while maintaining their excellent fuel economy. The availability of technologies such as common rail fuel injection systems, low sulfur diesel fuel, NOX adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with these future requirements. In meeting the Tier 2 emissions standards, the heavy light-duty trucks (HLDTs) and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. In support of this, the U.S.
Technical Paper

Emissions Reduction Performance of a Bimetallic Platinum/Cerium Fuel Borne Catalyst with Several Diesel Particulate Filters on Different Sulfur Fuels

2001-03-05
2001-01-0904
Results of engine bench tests on a 1998 heavy-duty diesel engine have confirmed the emissions reduction performance of a U.S. Environmental Protection Agency (EPA) registered platinum/cerium bimetallic fuel borne catalyst (FBC) used with several different catalyzed and uncatalyzed diesel particulate filters (DPF's). Performance was evaluated on both a 450ppm sulfur fuel (No.2 D) and a CARB 50ppm low sulfur diesel (LSD) fuel. Particulate emissions of less than 0.02g/bhp-hr were achieved on several combinations of FBC and uncatalyzed filters on 450ppm sulfur fuel while levels of 0.01g/bhp-hr were achieved for both catalyzed and uncatalyzed filters using the FBC with the low sulfur CARB fuel. Eight-mode steady state testing of one filter and FBC combination with engine timing changes produced a 20% nitrogen oxide (NOx) reduction with particulates (PM) maintained at 0.01g/bhp-hr and no increase in measured fuel consumption.
Technical Paper

A Fundamental Consideration on NOx Adsorber Technology for DI Diesel Application

2002-10-21
2002-01-2889
Diesel engines are far more efficient than gasoline engines of comparable size, and emit less greenhouse gases that have been implicated in global warming. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15 ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same low emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulation. Achieving such low emissions cannot be done through engine development and fuel reformulation alone, and requires application of NOx and particulate matter (PM) aftertreatment control devices. There is a widespread consensus that NOx adsorbers and particulate filter are required in order for diesel engines to meet the 2007 emissions regulations for NOx and PM. In this paper, the key exhaust characteristics from an advanced diesel engine are reviewed.
Technical Paper

Experimental Determination of the Kinetics of Diesel Soot Oxidation by O2 - Modeling Consequences

2003-03-03
2003-01-0833
Several complementary experimental techniques were applied to investigate kinetics of diesel soot oxidation by O2 in an attempt to provide accurate data for modeling of the Diesel Particulate Filters regeneration process. For two diesel soot samples with measurably different properties, it was shown that the complexity of their overall kinetic behavior was due to an initial period of rapidly changing reactivity. This initial high reactivity was understood not to be related to the SOF, and was quantitatively correlated to the extent of soot pre-oxidation. This initial reactivity can affect the averaged apparent kinetic parameters, for example resulting in the lower apparent activation energy values. After the initial soot pre-oxidation, which consumed ∼10-25% of carbon, the remaining soot was behaving very uniformly, producing linear Arrhenius plots in a remarkably broad range of temperatures (330-610°C) and integral conversions (up to 90%).
Technical Paper

Comparison of Exhaust Emissions, Including Toxic Air Contaminants, from School Buses in Compressed Natural Gas, Low Emitting Diesel, and Conventional Diesel Engine Configurations

2003-03-03
2003-01-1381
In the United States, most school buses are powered by diesel engines. Some have advocated replacing diesel school buses with natural gas school buses, but little research has been conducted to understand the emissions from school bus engines. This work provides a detailed characterization of exhaust emissions from school buses using a diesel engine meeting 1998 emission standards, a low emitting diesel engine with an advanced engine calibration and a catalyzed particulate filter, and a natural gas engine without catalyst. All three bus configurations were tested over the same cycle, test weight, and road load settings. Twenty-one of the 41 “toxic air contaminants” (TACs) listed by the California Air Resources Board (CARB) as being present in diesel exhaust were not found in the exhaust of any of the three bus configurations, even though special sampling provisions were utilized to detect low levels of TACs.
X