Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Metering Characteristics of a Closed Center Load - Sensing Proportional Control Valve

2009-10-06
2009-01-2850
The investigation of the flow through the metering section of hydraulic components plays a fundamental role in the design and optimization processes. In this paper the flow through a closed center directional control valve for load -sensing application is studied by means of a multidimensional CFD approach. In the analysis, an open source fluid-dynamics code is used and both cavitation and turbulence are accounted for in the modeling. A cavitation model based on a barotropic equation of state and homogeneous equilibrium assumption, including gas absorption and dissolution in the liquid medium, is adopted and coupled to a two equation turbulence approach. Both direct and inverse flows through the metering section of the control valve are investigated, and the differences in terms of fluid - dynamics behavior are addressed In particular, the discharge coefficient, the recirculating regions, the flow acceleration angle and the pressure and velocity fields are investigated and compared.
Technical Paper

The EGR Effects on Combustion Regimes in Compression Ignited Engines

2007-09-16
2007-24-0040
The main purpose of this study is to investigate the effects of exhaust gases on different combustion modes in DI, Direct Injection, compression ignited engines in terms of combustion efficiency and emission formations. The conventional parametric Φ -T (Equivalence Ratio-Temperature) emission map analysis has been extended by constructing the transient maps for different species characterizing the combustion and emission formation processes. The results of the analysis prove the efficiency of different combustion modes when EGR loads and injection scenarios.
Technical Paper

The Influence of Cavitation and Aeration in a Multi-Fuel Injector

2008-10-06
2008-01-2390
The internal flow field of a low pressure common rail type multi-fuel injector is analyzed by means of numerical simulation and particular attention is devoted to the cavitation and aeration phenomena when using different fuel mixtures. The fluid-dynamics open source OpenFOAM code is used; and the original cavitation model (based on a barotropic equation of state and homogeneous equilibrium assumption) is extended in order to account also for gases dissolved in the liquid medium. The effect of air dissolution into liquid is determined by introducing the Henry law for the equilibrium condition and the time dependence of solubility is calculated on a Bunsen Coefficient basis. A preliminary study of test cases available in literature is carried out to address the model predictive capabilities and grid dependency. The calculated pressure distribution and discharge coefficient for different nozzle shapes and operating conditions are compared with the referenced experimental measurements.
X