Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Chemical Kinetics Study on Two-Stage Main Heat Release in Ignition Process of Highly Diluted Mixtures

2013-04-08
2013-01-1657
Some experimental data indicate that an HCCI process of a highly diluted mixture is characterized with a two-stage profile of heat release after the heat release by low-temperature oxidation, and with slow CO oxidation into CO₂ at a low temperature. In the present paper, these characteristics are discussed using a detailed chemical kinetic model of normal heptane, and based on an authors' idea that an ignition process can be divided into five phases. The H₂O₂ loop reactions mainly contribute to heat release in a low-temperature region of the TI (thermal ignition) preparation phase. However, H+O₂+M=HO₂+M becomes the main contributor to heat release in a high-temperature region of the TI preparation phase. H₂O₂ is accumulated during the LTO (low-temperature oxidation) and NTC (negative temperature oxidation) phases, and drives the H₂O₂ loop reactions to increase the temperature during the TI preparation phase.
Journal Article

Evaluation of Engine Performance and Combustion in Natural Gas Engine with Pre-Chamber Plug under Lean Burn Conditions

2014-11-11
2014-32-0103
Engines using natural gas as their main fuel are attracting attention for their environmental protection and energy-saving potential. There is demand for improvement in the thermal efficiency of engines as an energy-saving measure, and research in this area is being actively pursued on spark ignition engines and HCCI engines. In spark ignition gas engines, improving combustion under lean condition and EGR (exhaust gas recirculation) condition is an issue, and many large gas engines use a pre-chamber. The use of the pre-chamber approach allows stable combustion of lean gas mixtures at high charging pressure, and the reduction of NOx emissions. In small gas engines, engine structure prevents the installation of pre-chambers with adequate volume, and it is therefore unlikely that the full benefits of the pre-chamber approach will be derived.
Journal Article

Improvement in Vehicle Motion Performance by Suppression of Aerodynamic Load Fluctuations

2015-04-14
2015-01-1537
This study focuses on fluctuations in the aerodynamic load acting on a hatchback car model under steady-state conditions, which can lead to degeneration of vehicle motion performance due to excitation of vehicle vibrations. Large eddy simulations were first conducted on a vehicle model based on a production hatchback car with and without additional aerodynamic devices that had received good subjective assessments by drivers. The numerical results showed that the magnitudes of the lateral load fluctuations were larger without the devices at Strouhal numbers less than approximately 0.1, where surface pressure fluctuations indicated a negative correlation between the two sides of the rear end, which could give rise to yawing and rolling vibrations. Based on the numerical results, wind-tunnel tests were performed with a 28%-scale hatchback car model.
Journal Article

Backward Flow of Hot Burned Gas Surrounding High-Pressure Diesel Spray Flame from Multi-hole Nozzle

2015-09-01
2015-01-1837
The backward flow of the hot burned gas surrounding a diesel flame was found to be one of the factors dominating the set-off length (also called the lift-off length), that is, the distance from a nozzle exit into which a diffusion flame cannot intrude. In the combustion chamber of an actual diesel engine, the entrainment of the surrounding gas into a spray jet from a multi-hole nozzle is restricted by the walls and adjacent spray jets, which induces the backward flow of the surrounding gas. A new momentum theory to calculate the backward flow velocity was established by extending Wakuri's momentum theory. Shadowgraph imaging in an optical engine successfully visualized the backward flow of the hot burned gas.
Journal Article

Typical Velocity Fields and Vortical Structures around a Formula One Car, based on Experimental Investigations using Particle Image Velocimetry

2016-04-05
2016-01-1611
This paper presents typical flow structures around a 60%-scale wind-tunnel model of a Formula One (F1) car, using planar particle image velocimetry (PIV). The customized PIV system is permanently installed in a wind tunnel to help aerodynamicists in the development loop. The PIV results enhance the understanding of the mean velocity field in the two-dimensional plane in some important areas of the car, such as the front-wheel wake and the underfloor flow. These real phenomena obtained in the wind tunnel also help maintain the accuracy of simulations using computational fluid dynamics (CFD) by allowing regular checking of the correlation with the real-world counterpart. This paper first surveys recent literature on unique flow structures around the rotating exposed wheel, mostly that on the isolated wheel, and then gives the background to F1 aerodynamics in the late 2000s.
Journal Article

Clarification of Transient Characteristics by Coupled Analysis of Powertrains and Vehicles

2016-04-05
2016-01-1314
With the goal of improving drivability, this research aimed to clarify the mechanism of vehicle longitudinal acceleration, focusing on tip-in acceleration. Conventional typical analysis methods include experimental modal and model-based analysis. However, since the former requires the measurement of impulses and other input forces while the vehicle is stopped, measurement under actual driving conditions is difficult. The latter requires characteristic values such as the stiffness and damping coefficients to be identified in advance, which cannot be achieved either easily or precisely. Therefore, this paper proposes a new experiment-based analysis method. This method enables the acquisition of engine torque and transmission torque/force by measuring only the acceleration values of some components under driving conditions.
Journal Article

Non-Contact Measurement Method for High Frequency Impedance of Load at the End of Wire Harness

2017-03-28
2017-01-1643
To avoid a trial and error adjustment for designing EMI filters, clarifying load impedance of operating condition, i.e., dynamic impedance of equipment is very useful. Therefore the need to a non-contact measurement method of the impedance connected to a wire harness is increasing rapidly. A measurement method using a network analyzer with two current probes was previously proposed. However, it was confirmed only up to 30 MHz. Many radio equipment operate above 30 MHz such as FM receivers and GPS receivers installed in vehicles. So increasing the measurement frequency is necessary in the auto industry. At first, we tried to expand the applicable frequency to 100 MHz, i.e., FM band. In this study, we applied the transmission line theory using the non-contact measurement method. Furthermore, in order to use the theory, the characteristic impedance and phase constant of the wire harness are required. So we made an additional measurement to estimate them.
Journal Article

Emissions Reduction Potential of Extremely High Boost and High EGR Rate for an HSDI Diesel Engine and the Reduction Mechanisms of Exhaust Emissions

2008-04-14
2008-01-1189
The effects of an increasing boost pressure, a high EGR rate and a high injection pressure on exhaust emissions from an HSDI (High Speed Direct Injection) diesel engine were examined. The mechanisms were then investigated with both in-cylinder observations and 3DCFD coupled with ϕT-map analysis. Under a high-load condition, increasing the charging efficiency combined with a high injection pressure and a high EGR rate is an effective way to reduce NOx and soot simultaneously, which realized an ultra low NOx of 16ppm at 1.7MPa of IMEP (Indicated Mean Effective Pressure). The flame temperature with low NOx and low soot emissions is decreased by 260K from that with conventional emissions. Also, the distribution of the fuel-air mixture plot on a ϕT-map is moved away from the NOx and soot formation peninsula, compared to the conventional emissions case.
Journal Article

Ventilation Characteristics of Modeled Compact Car Part 1 Airflow Velocity Measurement with PIV

2008-04-14
2008-01-0732
In the present study, a model experiment is performed in order to clarify the ventilation characteristics of car cabin. This study also provides high precision data for benchmark test. As a first step, the ventilation mode is tested, which is one of the representative air-distribution modes. Part 1 describes the properties of the flow field in the cabin obtained by the experiment. Part 2 describes the ventilation efficiencies such as the age of air by using trace gas method. The properties of flow field are measured using particle image velocimetry (PIV). The mean velocity profiles, the standard deviation distribution, and the turbulence intensity distribution are discussed. The brief comparison between experiments and predictions of computational fluid dynamics (CFD) is also presented. In the comparison between experiment and CFD, the results showed similar flow field.
Journal Article

Low Emissions and High-Efficiency Diesel Combustion Using Highly Dispersed Spray with Restricted In-Cylinder Swirl and Squish Flows

2011-04-12
2011-01-1393
A new clean diesel combustion concept has been proposed and its excellent performance with respect to gas emissions and fuel economy were demonstrated using a single cylinder diesel engine. It features the following three items: (1) low-penetrating and highly dispersed spray using a specially designed injector with very small and numerous orifices, (2) a lower compression ratio, and (3) drastically restricted in-cylinder flow by means of very low swirl ports and a lip-less shallow dish type piston cavity. Item (1) creates a more homogeneous air-fuel mixture with early fuel injection timings, while preventing wall wetting, i.e., impingement of the spray onto the wall. In other words, this spray is suitable for premixed charge compression ignition (PCCI) operation, and can decrease both nitrogen oxides (NOx) and soot considerably when the utilization range of PCCI is maximized.
Journal Article

Cooling Loss Reduction of Highly Dispersed Spray Combustion with Restricted In-Cylinder Swirl and Squish Flow in Diesel Engine

2012-04-16
2012-01-0689
In diesel engines with a straight intake port and a lipless cavity to restrict in-cylinder flow, an injector with numerous small-diameter orifices with a narrow angle can be used to create a highly homogeneous air-fuel mixture that, during PCCI combustion, dramatically reduces the NOX and soot without the addition of expensive new devices. To further improve this new combustion concept, this research focused on cooling losses, which are generally thought to account for 16 to 35% of the total energy of the fuel, and approaches to reducing fuel consumption were explored. First, to clarify the proportions of convective heat transfer and radiation in the cooling losses, a Rapid Compression Machine (RCM) was used to measure the local heat flux and radiation to the combustion chamber wall. The results showed that though larger amounts of injected fuel increased the proportion of heat losses from radiation, the primary factor in cooling losses is convective heat transfer.
Journal Article

Verification of ASSTREET Driver-Agent Model by Collaborating with the Driving Simulator

2012-04-16
2012-01-1161
This paper proposes a novel method of verifying comprehensive driver model used for the evaluation of driving safety systems, which is achieved by coupling the traffic simulation and the driving simulator (DS). The method consists of three-step procedure. In the first step, an actual driver operates a DS vehicle in the traffic flow controlled by the traffic simulation. Then in the next step, the actual driver is replaced by a driver model and the surrounding vehicle maneuvers are replayed using the recorded data from the first step. Then, the maneuver by the driver model is compared directly with the actual driver's maneuver along the simulation time steps.
Journal Article

Validation and Modeling of Transient Aerodynamic Loads Acting on a Simplified Passenger Car Model in Sinusoidal Motion

2012-04-16
2012-01-0447
Dynamic wind-tunnel tests of a simplified passenger car model were conducted using a two-degree-of-freedom model shaker. Time-resolved aerodynamic loads were derived from a built-in six-component balance and other sensors while the model underwent sinusoidal heaving and pitching motions at frequencies up to 8 Hz. The experimental results showed that frequency-dependent gains and phase differences between the model height/angle and the aerodynamic loads are in close agreement with those predicted by large-eddy simulation (LES) using an arbitrary Lagrangian-Eulerian (ALE) method. Based on these findings, transient aerodynamic loads associated with lateral motions were also estimated by LES analysis. Based on the above results, a full-unsteady aerodynamic load model was then derived in the form of a linear transfer function. The force and moment fluctuations associated with the vertical and lateral motions are well described by the full-unsteady aerodynamic load model.
Technical Paper

Real Time Oil Concentration Measurement in Automotive Air Conditioning by Ultraviolet Light Absorption

1991-02-01
910222
A method of real time oil concentration measurment has been developed utilizing the effect of ultraviolet light absorption by lubricating oil in the liquid refrigerant line of an automotive air conditioning system. The light wavelengths from 200nm to 370nm are selected based on the ultraviolet light absorption sensitivity of the oils and refrigerants (CFC12,HFC134a). The effects of temperature,pressure and contaminantion on the absorbance of light are investigated in order to determine how these parameters affect the concentration measurement. The density changes of refrigerants are then compensated in the calculation for the oil concentration. The uncertainties of the overall concentration measurement are less than ±0.1 weight percent at 1 weight percent concentration. A transient oil circulation of the automotive air conditioner is measured by using this method.
Journal Article

A New Generation of Optically Accessible Single-Cylinder Engines for High-speed and High-load Combustion Analysis

2011-08-30
2011-01-2050
Over the last few decades, in-cylinder visualization using optically accessible engines has been an important tool in the detailed analysis of the in-cylinder phenomena of internal combustion engines. However, most current optically accessible engines are recognized as being limited in terms of their speed and load, because of the fragility of certain components such as the elongated pistons and transparent windows. To overcome these speed and load limits, we developed a new generation of optically accessible engines which extends the operating range up to speeds of 6000 rpm for the SI engine version, and up to in-cylinder pressures of 20 MPa for the CI engine version. The main reason for the speed limitation is the vibration caused by the inertia force arising from the heavy elongated piston, which increases with the square of the engine speed.
Journal Article

Injection Nozzle Coking Mechanism in Common-rail Diesel Engine

2011-08-30
2011-01-1818
The hole diameter of injection nozzles in diesel engines has become smaller and the nozzle coking could potentially cause injection characteristics and emissions to deteriorate. In this research, engine tests with zinc-added fuels, deposit analyses, laboratory tests and numerical calculations were carried out to clarify the deposit formation mechanisms. In the initial phase of deposit formation, lower zinc carboxylate formed close to the nozzle hole outlet by reactions between zinc in the fuel and lower carboxylic acid in the combustion gas. In the subsequent growth phase, the main component changed to zinc carbonate close to nozzle hole inlet by reactions with CO₂ in the combustion gas. Metal components and combustion gases are essential elements in the composition of these deposits. One way of removing these deposits is to utilize cavitations inside the nozzle holes.
Journal Article

Ignition Characteristics of Ethane and Its Roles in Natural Gas for HCCI Engine Operation

2015-04-14
2015-01-0811
The ignition characteristics of each component of natural gas and the chemical kinetic factors determining those characteristics were investigated using detailed chemical kinetic calculations. Ethane (C2H6) showed a relatively short ignition delay time with high initial temperature; the heat release profile was slow in the early stage of the ignition process and rapid during the late stage. Furthermore, the ignition delay time of C2H6 showed very low dependence on O2 concentration. In the ignition process of C2H6, HO2 is generated effectively by several reaction paths, and H2O2 is generated from HO2 and accumulated with a higher concentration, which promotes the OH formation rate of H2O2 (+ M) = OH + OH (+ M). The ignition characteristics for C2H6 can be explained by H2O2 decomposition governing OH formation at any initial temperature.
Journal Article

Chemical Kinetics Study on Small-Alkane Ignition Process to Design Optimum Methane-Based Blend for HCCI

2014-04-01
2014-01-1281
The ignition delay times and heat release profiles of CH4, C2H6, C3H8, i-C4H10, and n-C4H10 and dual-component CH4-based blends with these alkanes in air were determined using a detailed chemical kinetic model. The apparent activation energy of C2H6 in the relationship between initial temperature and ignition delay time is higher than those of the other alkanes because OH formation is dominated by H2O2(+M)=OH+OH(+M) from the beginning over a wide range of initial temperatures. The heat release rate of C2H6 is higher than those of the other alkanes in the late stage of ignition delay time because H2O2 is accumulated with a higher concentration and promotes the OH formation rate of H2O2(+M)=OH+OH(+M). These ignition characteristics are reflected in those of CH4/C2H6.
Journal Article

Lubrication Analysis of a Con-Rod Bearing Using a Cycle Simulation of Gasoline Engines with A/F Variation

2011-08-30
2011-01-2118
In the case of engine bearings, pressure in a cylinder is necessary for the analysis of lubrication. In this study, a cycle simulation of gasoline engines has been developed to predict the pressure in the cylinder under the wide range of engine operation. In the cycle simulation, intake and exhaust processes are included and combustion process is calculated with flame propagation based on burning velocity. Here, the equation of ignition delay and the equation of burning velocity were determined with experimental results of a gasoline engine over wide A/F ratio. The pressure in the cylinder over the engine cycle is introduced into an elastohydrodynamic lubrication analysis of a con-rod bearing to calculate the load on the bearing in addition to the inertia force. Orbital movement, minimum film thickness, and power loss in the bearing were estimated over the wide range of engine operation.
Technical Paper

Challenge to the Diesel Engine Lubrication with Fuel

2007-07-23
2007-01-1978
A study of diesel fuel as a lubricant for diesel engines was conducted with the aim of dramatically reducing engine friction and eliminating the need to change the lubricating oil. A prototype single-cylinder engine modified for diesel fuel lubrication was made, and it was confirmed that firing operation is possible. Piston friction during the firing operation was reduced by modifying the shape of the cylinder liner surface to improve the retention of the lubricating oil. The study produced valid findings concerning engine lubrication, not only with diesel fuel, but also with ultra-low viscosity oil.
X