Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Constitutive Modeling of Brain Parenchyma Taking Account of Strain Rate Dependency with Anisotropy and Application to Brain Injury Analyses

2016-04-05
2016-01-1485
A reduction in brain disorders owing to traumatic brain injury (TBI) caused by head impacts in traffic accidents is needed. However, the details of the injury mechanism still remain unclear. In past analyses, brain parenchyma of a head finite element (FE) model has generally been modeled using simple isotropic viscoelastic materials. For further understanding of TBI mechanism, in this study we developed a new constitutive model that describes most of the mechanical properties in brain parenchyma such as anisotropy, strain rate dependency, and the characteristic features of the unloading process. Validation of the model was performed against several material test data from the literature with a simple one-element model. The model was also introduced into the human head FE model of THUMS v4.02 and validated against post-mortem human subject (PMHS) test data about brain displacements and intracranial pressures during head impacts.
Technical Paper

Relationship between Localized Spine Deformation and Cervical Vertebral Motions for Low Speed Rear Impacts Using Human Volunteers

1999-09-23
1999-13-0010
It is important to more clearly identify the relationship among the ramping-up motion, straightening of the whole spine, and cervical vertebrae motion in order to clarify minor neck injury mechanism. The aim of the current study is to verify the influence of the change of the spine configuration on human cervical vertebral motion and on head/neck/torso kinematics under low speed rear-end impacts. Seven healthy human volunteers participated in the experiment under the supervision of an ethics committee. Each subject sat on a seat mounted on a sled that glided backward on rails and simulated actual car impact acceleration. Impact speeds (4, 6, and 8 km/h), and seat stiffness (rigid and soft) without headrest were selected. During the experiment, the change of the spine configuration (measured by a newly developed spine deformation sensor with 33 paired set strain gauges and placed on the skin) and the interface load-pressure distribution was recorded.
Technical Paper

Analysis of Head and Neck Response During Side Impact

1999-03-01
1999-01-0717
Numerical analyses of head and neck response during side impact are presented in this paper. A mathematical human model for side impact simulation was developed based on previous studies of other researchers. The effects of muscular activities during severe side impact were analyzed with the use of this model. This study shows that the effect of muscular activities is significant especially if the occupant is prepared to resist the impact. This result suggests that the modeling of muscles is important for the simulation of real accident situation.
Technical Paper

Development and Validation of the Total HUman Model for Safety (THUMS) Version 5 Containing Multiple 1D Muscles for Estimating Occupant Motions with Muscle Activation During Side Impacts

2015-11-09
2015-22-0003
Accurate prediction of occupant head kinematics is critical for better understanding of head/face injury mechanisms in side impacts, especially far-side occupants. In light of the fact that researchers have demonstrated that muscle activations, especially in neck muscles, can affect occupant head kinematics, a human body finite element (FE) model that considers muscle activation is useful for predicting occupant head kinematics in real-world automotive accidents. In this study, we developed a human body FE model called the THUMS (Total HUman Model for Safety) Version 5 that contains 262 one-dimensional (1D) Hill-type muscle models over the entire body. The THUMS was validated against 36 series of PMHS (Post Mortem Human Surrogate) and volunteer test data in this study, and 16 series of PMHS and volunteer test data on side impacts are presented. Validation results with force-time curves were also evaluated quantitatively using the CORA (CORrelation and Analysis) method.
X