Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Simulation of a Porous Medium (PM) Engine Using a Two-Zone Combustion Model

2008-06-23
2008-01-1516
Porous medium (PM) engine was a new type engine based on the technique of combustion in porous medium, which can realize homogeneous and stable combustion. In this paper, the combustion and working processes of a specific PM engine was simulated by a two-zone model considering the influences of the mass distribution, heat transfer from the cylinder wall, mass exchange between zones and the heat transfer in porous medium. Influences of operating parameters, e.g. intake temperature and pressure, compression ratio, the excess air ratio on the performance of the PM engine were discussed. It is found out that the porous medium, acting as a heat recuperator, can significantly enhance the evaporation of liquid fuel and preheat the mixture, which promotes the ignition and combustion in the cylinder; and that the initial PM temperature and the compression ratio are critical factors controlling the compression ignition of the mixture.
Technical Paper

Numerical Study on Turbulent Two-Phase Flow in a Porous Media Combustion Chamber

2008-06-23
2008-01-1592
To understand the working mechanism of the porous medium (PM) internal combustion engine, effects of a porous medium heat regenerator inserted into a combustion chamber on the turbulent flow field and fuel-air mixture formation are studied by numerical simulation. The cylindrical chamber has a constant volume, in which a disk-shaped PM insert is fixed. A simplified model for the random structure of the PM is presented, in which the PM is represented by an assembly of a great number of randomly distributed solid units. To simulate flows in the PM a Brinkman-Forchheimer-extended Darcy's equation is introduced into the numerical solver. A version of two-equation k - ε turbulence model suggested by Antohe and Lage is employed for the turbulence prediction in the PM. A spray model, in which the effects of drop breakup, collision and coalescence are taken into account, is introduced to describe spray/wall interactions.
Technical Paper

Numerical Investigation of the Effects of Physical Properties on Spray Characteristics and NVH Characteristics

2023-05-08
2023-01-1127
For liquid fueled engine, the fuel atomization affects fuel’s evaporation, combustion, noise and vibration characteristics eventually. In this study, the effects of fuel species on the internal flow and near field primary breakup characteristics of a nozzle “Spray C” are investigated. Based on the framework of OpenFOAM, the newly developed solver which coupled cavitation model and the multifluid-quasi-VOF (Volume-of-Fluid) model, and combines the LES (Large Eddy Simulation) are applied to simulate the nozzle inner flow and near field jet breakup when using diesel and biodiesel respectively. The transient characteristics of nozzle inner flow and near field spray of two different fuels were analyzed, and the variation of axial pressure and velocity of nozzle was obtained. The simulation results show that the cavitation of biodiesel with high viscosity and low saturated vapor pressure develops slower and weaker.
X