Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

A Hybrid Combustion Control Strategy for Heavy Duty Diesel Engines Based on the Technologies of Multi-Pulse Injections, Variable Boost Pressure and Retarded Intake Valve Closing Timing

2011-04-12
2011-01-1382
Combustion control strategy for high efficiency and low emissions in a heavy duty (H D) diesel engine was investigated experimentally in a single cylinder test engine with a common rail fuel system, EGR (Exhaust Gas Recirculation) system, boost system and retarded intake valve closing timing actuator. For the operation loads of IMEPg (Gross Indicated Mean Effective Pressure) less than 1.1 MPa the low temperature combustion (LTC) with high rate of EGR was applied. The fuel injection modes of either single injection or multi-pulse injections, boost pressure and retarded intake valve closing timing (RIVCT) were also coupled with the engine operation condition loads for high efficiency and low emissions. A higher boost pressure played an important role in improving fuel efficiency and obtaining ultra-low soot and NOx emissions.
Technical Paper

Research in the Effects of Intake Manifold Length and Chamber Shape on Performance for an Atkinson Cycle Engine

2016-04-05
2016-01-1086
In order to improve the fuel consumption and expand the range of low fuel consumption area of a 1.5L Atkinson cycle PFI engine, the effect of the intake manifold length and chamber shape on the engine performance is investigated by setting up a GT-power (1-D) and an AVL-Fire (3-D) computational model which are calibrated with experimental data. After this the new engine was transformed to the test bench to do the calibration experiment. The results demonstrate that the intake manifold case_1 (the length is 300mm, side intake form) matched with a new designed chamber improves combustion in cylinder with a range 1.6∼7.4g/(kW•h) reduced in fuel consumption of speed that has been studied; the case_3 (the length is 100mm, intermediate intake form) matched with the new designed chamber with a range 3.86∼7g/(kW•h) reduced in fuel consumption of speed that has been studied. Both case_1 and case_3 expand the range of low fuel consumption area significantly.
Technical Paper

Combustion Characteristics of Acetone, Butanol, and Ethanol (ABE) Blended with Diesel in a Compression-Ignition Engine

2016-04-05
2016-01-0884
Acetone-Butanol-Ethanol (ABE) is an intermediate product in the ABE fermentation process for producing bio-butanol. As an additive for diesel, it has been shown to improve spray evaporation, improve fuel atomization, enhance air-fuel mixing, and enhance combustion as a whole. The typical compositions of ABE are in a volumetric ratio of 3:6:1 or 6:3:1. From previous studies done in a constant volume chamber, it was observed that the presence of additional acetone in the blend caused advancement in the combustion phasing, but too much acetone content led to an increase in soot emission during combustion. The objective of this research was to investigate the combustion of these mixtures in a diesel engine. The experiments were conducted in an AVL 5402 single-cylinder diesel engine at different speeds and different loads to study component effects on the various engine conditions. The fuels tested in these experiments were D100, ABE(3:6:1)10, ABE(3:6:1)20, ABE(6:3:1)10, and ABE(6:3:1)20.
Technical Paper

Characteristics of Sub/Supercritical Gasoline and Iso-Octane Jets in High Temperature Environment

2019-04-02
2019-01-0289
Based on the temperature and pressure in the cylinder of GDI (Gasoline Direct Injection) engines under the common operating conditions, jets´ characteristics of gasoline and iso-octane at different fuel temperatures under the high ambient temperature were studied by means of high-speed photography and striation method. It is found that the supercritical gasoline jet shows the morphological collapse of jet center and the protrusion of the front surface, but the iso-octane jet doesn´t. Meanwhile, as the fuel temperature rises, the flash boiling and the interference between adjacent plumes affect the gasoline jet, and cause the center of the jet to form a high-speed and low-pressure zone, hence the air entrainment in this region contributes to the collapse of jets. The collapse and convergence of jets´ morphology are the main reasons for the change of penetration and cone angle.
Technical Paper

Experimental Study on Impingement of Fuel Droplet on Substrates

2019-04-02
2019-01-0300
Within a gasoline direct injection (GDI) engine, the impingement of fuel droplet on substrates induces various problems such as particular matter emission, oil dilution and abnormal combustion. Therefore, in order to solve these problems, it is urgent to have a clear understanding of the impingement behavior of fuel droplet impacting on substrates. Most previous studies have focused on the impingement of either water droplet on dry solid surface or the impinging droplet on the liquid film of the same type of liquid, while little research has been conducted on the impingement of fuel droplet on relevant substrates existing in GDI engines. The impingement of fuel droplet with higher Weber number on dry surface, fuel film and oil film with different thickness and viscosity were investigated experimentally. Results show that fuel droplet impacting on dry wall is easy to be deposited to form a fuel film. The fuel film attached to the wall is the main reason for the splash.
Technical Paper

Characteristics of Single Fuel Droplet Impact on Oil Film

2019-04-02
2019-01-0304
In order to better understand the spray impingement behavior of the gasoline direct injection (GDI) engine, this paper used the laser induced fluorescence (LIF) test method to conduct basic research on the fuel droplet impact onto the oil film. The effects of different incident droplet Weber number, dimensionless oil film thickness and oil film viscosity on the morphology of oil film after impact were investigated. And the composition of splashing droplets after impingement was analyzed. The morphology of oil film after impact was divided into three categories: stable crown, delayed splash crown, and prompt splash crown. The stable crown has only splashing fuel droplets, the splashing droplets of delayed splash crown are consist of fuel and oil film. The splashing droplets of prompt splash crown mainly include the oil film. It is shown that the larger the Weber number of incident droplets, the larger the dimensionless crown height and diameter, the easier the oil film will splash.
Technical Paper

Three-Dimensional Multi-Scale Simulation for Large-Scale Proton Exchange Membrane Fuel Cell

2019-04-02
2019-01-0381
PEMFC (proton exchange membrane or polymer electrolyte membrane fuel cell) is a potential candidate as a future power source for automobile applications. Water and thermal management is important to PEMFC operation. Numerical models, which describe the transport and electrochemical phenomena occurring in PEMFCs, are important to the water and thermal management of fuel cells. 3D (three-dimensional) multi-scale CFD (computational fluid dynamics) models take into account the real geometry structure and thus are capable of predicting real operation/performance. In this study, a 3D multi-phase CFD model is employed to simulate a large-scale PEMFC (109.93 cm2) under various operating conditions. More specifically, the effects of operating pressure (1.0-4.0 atm) on fuel cell performance and internal water and thermal characteristics are studied in detail under two inlet humidities, 100% and 40%.
Technical Paper

An Experimental Study of the Combustion, Performance and Emission Characteristics of a CI Engine under Diesel-1-Butanol/CNG Dual Fuel Operation Mode

2016-04-05
2016-01-0788
In order to comply with the stringent emission regulations, many researchers have been focusing on diesel-compressed natural gas (CNG) dual fuel operation in compression ignition (CI) engines. The diesel-CNG dual fuel operation mode has the potential to reduce both the soot and NOx emissions; however, the thermal efficiency is generally lower than that of the pure diesel operation, especially under the low and medium load conditions. The current experimental work investigates the potential of using diesel-1-butanol blends as the pilot fuel to improve the engine performance and emissions. Fuel blends of B0 (pure diesel), B10 (90% diesel and 10% 1-butanol by volume) and B20 (80% diesel and 20% 1-butanol) with 70% CNG substitution were compared based on an equivalent input energy at an engine speed of 1200 RPM. The results indicated that the diesel-1-butanol pilot fuel can lead to a more homogeneous mixture due to the longer ignition delay.
Technical Paper

Experimental Comparison between Stratified Flame Ignition and Micro Flame Ignition in a Gasoline SI-CAI Hybrid Combustion Engine

2017-03-28
2017-01-0737
Controlled Auto-Ignition (CAI), also known as Homogeneous charge compression ignition (HCCI), has been the subject of extensive research because of their ability to providing simultaneous reduction in fuel consumption and NOx emissions in a gasoline engine. However, due to its limited operation range, combustion mode switching between CAI and spark ignition (SI) combustion is essential to cover the overall operational range of a gasoline engine for passenger car applications. Previous research has shown that the SI-CAI hybrid combustion has the potential to control the ignition timing and heat release process during both steady state and transient operations. However, it was found that the SI-CAI hybrid combustion process is often characterized with large cycle-to-cycle variations, due to the flame instability at high dilution conditions.
Technical Paper

The Evaporation Characteristics of Cylinder Oil of Low-Speed 2-Stroke Marine Engines

2017-03-28
2017-01-0886
The combustion of cylinder lubricating oil (called as cylinder oil for short) is one of the major sources of PM emissions of low-speed 2-stroke marine diesel engines. For pre-mixed combustion low-speed 2-stroke marine gas engines, the auto-ignition of cylinder oil might result in knock or more hazard abnormal combustion - pre-ignition. Evaporation is a key sub-process of the auto-ignition process of cylinder oil droplets. The evaporation behavior has a profound impact on the auto-ignition and combustion processes of cylinder oil droplets, and a great influence on engine combustion performance and emission characteristics. This paper applied an oil suspending apparatus to investigate the evaporation behavior of cylinder oil droplets and base oil droplets. The effects of ambient temperatures on the evaporation process were measured and analyzed. The results indicate that the evaporation of cylinder oil includes heating, evaporating, pyrolysis, and polymerization.
Technical Paper

Experimental Investigation of Combustion and Emission Characteristics of Stoichiometric Stratified Flame Ignited (SFI) Hybrid Combustion in a 4-Stroke PFI/DI Gasoline Engine

2019-04-02
2019-01-0960
Controlled Auto-Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), can improve the fuel economy of gasoline engines and simultaneously achieve ultra-low NOx emissions. However, the difficulty in combustion phasing control and violent combustion at high loads limit the commercial application of CAI combustion. To overcome these problems, stratified mixture, which is rich around the central spark plug and lean around the cylinder wall, is formed through port fuel injection and direct injection of gasoline. In this condition, rich mixture is consumed by flame propagation after spark ignition, while the unburned lean mixture auto-ignites due to the increased in-cylinder temperature during flame propagation, i.e., stratified flame ignited (SFI) hybrid combustion.
Technical Paper

Dilution Boundary Expansion Mechanism of SI-CAI Hybrid Combustion Based on Micro Flame Ignition Strategy

2019-04-02
2019-01-0954
In decade years, Spark Ignition-Controlled Auto Ignition (SI-CAI) hybrid combustion, also called Spark Assisted Compression Ignition (SACI) has shown its high-efficiency and low emissions advantages. However, high dilution causes the problem of unstable initial ignition and flame propagation, which leads to high cyclic variation of heat release and IMEP. The instability of SI-CAI hybrid combustion limits its dilution degree and its ability to improve the thermal efficiency. In order to solve instability problems and expand the dilution boundary of hybrid combustion, micro flame ignition (MFI) strategy is applied in gasoline hybrid combustion engines. Small amount of Dimethyl Ether (DME) chosen as the ignition fuel is injected into cylinder to form micro flame kernel, which can stabilize the ignition combustion process.
Technical Paper

The Application of Controlled Auto-Ignition Gasoline Engines -The Challenges and Solutions

2019-04-02
2019-01-0949
Controlled Auto-Ignition (CAI) combustion, also known as Homogeneous Charge Compression Ignition (HCCI), has the potential to simultaneously reduce the fuel consumption and nitrogen oxides emissions of gasoline engines. However, narrow operating region in loads and speeds is one of the challenges for the commercial application of CAI combustion to gasoline engines. Therefore, the extension of loads and speeds is an important prerequisite for the commercial application of CAI combustion. The effect of intake charge boosting, charge stratification and spark-assisted ignition on the operating range in CAI mode was reviewed. Stratified flame ignited (SFI) hybrid combustion is one form to achieve CAI combustion under the conditions of highly diluted mixture caused by the flame in the stratified mixture with the help of spark plug.
Technical Paper

Computational Optimization of Syngas/Diesel RCCI Combustion at Low Load in Different Engine Size

2019-04-02
2019-01-0573
Syngas is considered to be a promising alternative fuel for the dual-fuel reactivity controlled compression ignition (RCCI) engine to reduce the fuel consumption and emissions. However, the optimal syngas compositions and fuel supply strategies in RCCI combustion are significantly affected by engine configurations, which have not been investigated yet. In this study, by integrating the KIVA-3V code and the non-dominated sort genetic algorithm II (NSGA-II), the optimizations for a 0.477 L single-cylinder engine with shallow/wide piston bowl (Engine A) and a 1.325 L single-cylinder engine with conventional omega-type piston (Engine B) under the syngas/diesel RCCI combustion were performed. The optimized operating parameters include the fuel-supply strategies, syngas compositions, and intake conditions. The results indicate that the fuel-supply strategy is flexible in Engine A due to the shallow/wide piston bowl and the relatively small cylinder bore.
Technical Paper

Evaluation of Knock Intensity and Knock-Limited Thermal Efficiency of Different Combustion Chambers in Stoichiometric Operation LNG Engine

2019-04-02
2019-01-1137
Liquefied natural gas (LNG) engine could provide both reduced operating cost and reduction of greenhouse gas (GHG) emissions. Stoichiometric operation with EGR and the three-way catalyst has become a potential approach for commercial LNG engines to meet the Euro VI emissions legislation. In the current study, numerical investigations on the knocking tendency of several combustion chambers with different geometries and corresponding performances were conducted using CONVERGE CFD code with G-equation flame propagation model coupled with a reduced natural gas chemical kinetic mechanism. The results showed that the CFD modeling approach could predict the knock phenomenon in LNG engines reasonably well under different thermodynamic and flow field conditions.
Technical Paper

Optical Experiments on Strong Knocking Combustion in Rapid Compression Machines with Different Fuels

2019-04-02
2019-01-1142
Nowadays the strong knocking combustion involving destructive pressure wave or shock wave has become the main bottleneck for highly boosted engines when pursuing high thermal efficiency. However, its fundamental mechanism is still not fully understood. In this study, synchronization measurements through simultaneous pressure acquisition and high-speed direct photography were performed to comparatively investigate the strong knocking combustion of iso-octane and propane in a rapid compression machine with flat piston design. The pressure characteristics and visualized images of autoignition and reaction wave propagation were compared, and the correlations between thermodynamic trajectories and mixture reactivity progress were analyzed. The results show that iso-octane behaves a greater propensity to strong knocking combustion than propane at similar target pressures.
Technical Paper

Numerical Investigation of the Potential of Late Intake Valve Closing (LIVC) Coupled with Double Diesel Direct-Injection Strategy for Meeting High Fuel Efficiency with Ultra-Low Emissions in a Heavy-Duty Reactivity Controlled Compression Ignition (RCCI) Engine at High Load

2019-04-02
2019-01-1166
The potential of diesel/gasoline RCCI combustion coupled with late intake valve closing (LIVC) and double direct injection of diesel for meeting high fuel efficiency with ultra-low emissions was investigated in this study. The study was aiming at high load operation in a heavy-duty diesel engine. Based on the reactivity stratification of RCCI combustion, the employment of double injection of diesel fuel provided concentration stratification of the high-reactivity fuel, which is to further realize effective control of the combustion process. Meanwhile, late intake valve closing (LIVC) strategy is introduced to control the maximum in-cylinder pressure and nitrogen oxides (NOx) emissions.
Technical Paper

Study of Polycyclic Aromatic Hydrocarbons Evolution Processing in GDI Engines Using TRF-PAH Chemical Kinetic Mechanism

2016-04-05
2016-01-0690
In the present study, we developed a reduced TRF-PAH chemical reaction mechanism consisted of iso-octane, n-heptane and toluene as gasoline surrogate fuels for GDI (gasoline direct injection) spark ignition engine combustion simulation. The reduced mechanism consists of 85 species and 232 reactions including 17 species and 40 reactions related to the PAHs (polycyclic aromatic hydrocarbons) formation. The present mechanism was validated for extensive validations with experimental ignition delay times in shock tubes and laminar flame speeds in flat flame adiabatic burner for gasoline/air and TRF/air mixtures under various pressures, temperatures and equivalence ratios related to engine conditions. Good agreement was achieved for most of the measurement. Mole fraction profiles of PAHs for n-heptane flame were also simulated and the experimental trends were reproduced well. The vapor-phase and particulate-bound PAHs existed in GDI engine exhaust were sampled and analyzed by GC-MS.
Technical Paper

Knock Threshold Detection in Turbocharged Gasoline Engine Using EEMD and Bispectrum

2016-04-05
2016-01-0643
Knock threshold detection is the key of closed loop control of ignition in gasoline engine, and it is also the difficult point in knock measurement. In this paper, an investigation of knock detection in turbocharged gasoline engine using bispectrum slice and ensemble empirical mode decomposition (EEMD) based on the engine cylinder head vibration signals is presented. By adding some finite amplitude Gaussian white noises to the signal, EEMD keeps the signal continuous in different time span, and therefore the mode mixing inhering in the classical empirical mode decomposition (EMD) method is alleviated. Power spectrum density (PSD) estimation is used to determine the band range of the resonance frequency generated by knock component. EEMD is used to decompose the original signals, the time-frequency characteristics of the Intrinsic Mode Functions (IMF) are analyzed using Continues Wavelet Transform (CWT) due to its excellent time-frequency resolution.
Journal Article

Three-Dimensional Simulation of Water Management for High-Performance Proton Exchange Membrane Fuel Cell

2018-04-03
2018-01-1309
Proton exchange membrane fuel cell (PEMFC) is widely regarded as the most promising candidate for the next generation power source of automobile, after the pure battery electric vehicle. In this study, the gas and liquid two-phase flow in channels and porous electrodes inside PEMFC coupled with electrochemical reaction is simulated in detail, in which the anisotropic gas diffusion layer (GDL) is also considered. In the simulation, the inlet reactant gas molar concentration is calculated based on the real inlet pressure, which is more practical than specifying a constant value in previous simulation. Meanwhile, the effect of electro-osmotic drag on membrane water content distribution is treated to be a convection term in the conservation equation, instead of a source term as usually used.
X