Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Kinetic Modeling of Soot Formation with Highlight in Effects of Surface Activity on Soot Growth for Diesel Engine Partially Premixed Combustion

2013-04-08
2013-01-1104
In this study, Partially Premixed Combustion (PPC) on a modified heavy-duty diesel engine was realized by hybrid combustion control strategy with flexible fuel injection timing, injection rate pattern modulation and high ratio of exhaust gas recirculation (EGR) at different engine loads. It features with different degrees of fuel/air mixture stratifications. The very low soot emissions of the experiments called for further understanding on soot formation mechanism so that to promote the capability of prediction. A new soot model was developed with highlight in effects of surface activity on soot growth for soot formation prediction in partially premixed combustion diesel engine. According to previous results from literatures on the importance of acetylene as growth specie of PAH and soot surface growth, a gas-phase reduced kinetic model of acetylene formation was developed and integrated into the new soot model.
Technical Paper

Effects of Late Intake Valve Closing Timing on Thermal Efficiency and Emissions Based on a Two-stage Turbocharger Diesel Engine

2013-04-08
2013-01-0276
This paper investigated the effects of late intake valve closing timing (IVCT) and two-stage turbocharger systems matching based on partially premixed combustion strategy. Tests were performed on a 12-liter L6 heavy-duty engine at loads up to 10 bar BMEP at various speed. IVCT (where IVCT is -80°ATDC, -65°ATDC and -55°ATDC at 1300 rpm, 1600 rpm and 1900 rpm, respectively) lowered the intake and exhaust difference pressure, reducing pumping loss and improved the effective thermal efficiency by 1%, 1.5% and 2% at BMEP of 5 bar at 1300 rpm, 1600 rpm and 1900 rpm. For certain injection timings and EGR rate, it is found that a significant reduction in soot (above 30%) and NOx (above 70%) emissions by means of IVCT. This is due to that IVCT lowered effective compression ratio and temperature during the compression stroke, resulting in a longer ignition delay as the fuel mixed more homogeneous with the charge air ahead of ignition.
Technical Paper

Experimental Study on Impingement of Fuel Droplet on Substrates

2019-04-02
2019-01-0300
Within a gasoline direct injection (GDI) engine, the impingement of fuel droplet on substrates induces various problems such as particular matter emission, oil dilution and abnormal combustion. Therefore, in order to solve these problems, it is urgent to have a clear understanding of the impingement behavior of fuel droplet impacting on substrates. Most previous studies have focused on the impingement of either water droplet on dry solid surface or the impinging droplet on the liquid film of the same type of liquid, while little research has been conducted on the impingement of fuel droplet on relevant substrates existing in GDI engines. The impingement of fuel droplet with higher Weber number on dry surface, fuel film and oil film with different thickness and viscosity were investigated experimentally. Results show that fuel droplet impacting on dry wall is easy to be deposited to form a fuel film. The fuel film attached to the wall is the main reason for the splash.
Technical Paper

Simulation Study on Implementation of Oxy-Fuel Combustion for a Practical GDI Engine

2021-04-06
2021-01-0380
As the impacts of global warming have become increasingly severe, Oxy-Fuel Combustion (OFC) has been widely considered as a promising solution to reduce Carbon Dioxide (CO2) for achieving net-zero emissions. In this study, a one-dimensional simulation was carried out to study the implementation of OFC technology on a practical turbocharged 4-cylinder Gasoline Direct Injection (GDI) engine with economical oxygen-fuel ratios and commercial gasoline. When the engine is converted from Conventional Air-fuel Combustion (CAC) mode to OFC mode, and the throttle opening, oxygen mass fraction, stoichiometric air-fuel ratio (lambda = 1) are kept constant, it was demonstrated that compared to CAC mode, θF gets a remarkable extension whereas θC is hardly affected. θF and θC are very sensitive to the ignition timing, and Brake Specific Fuel Consumption (BSFC) would benefit significantly from applying Maximum Brake Torque (MBT) ignition timing.
X