Refine Your Search

Topic

Search Results

Journal Article

HCCI Load Expansion Opportunities Using a Fully Variable HVA Research Engine to Guide Development of a Production Intent Cam-Based VVA Engine: The Low Load Limit

2012-04-16
2012-01-1134
While the potential emissions and efficiency benefits of HCCI combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on identifying challenges and opportunities associated with a production intent cam-based variable valve actuation (VVA) system on a multi-cylinder engine in comparison to a fully flexible, naturally aspirated, hydraulic valve actuation (HVA) system on a single-cylinder engine, with both platforms sharing the same GDI fueling system and engine geometry. The multi-cylinder production intent VVA system uses a 2-step cam technology with wide authority cam phasing, allowing adjustments to be made to the negative valve overlap (NVO) duration but not the valve opening durations. On the single-cylinder HVA engine, the valve opening duration and lift are variable in addition to the NVO duration. The content of this paper is limited to the low-medium operating load region at 2000 rpm.
Technical Paper

CFD-Aided Development of Spray for an Outwardly Opening Direct Injection Gasoline Injector

1998-02-23
980493
A high pressure outwardly opening fuel injector has been developed to produce sprays that meet the stringent requirements of gasoline direct injection (DI) combustion systems. Predictions of spray characteristics have been made using KIVA-3 in conjunction with Star-CD injector flow modeling. After some modeling iterations, the nozzle design has been optimized for the required flow, injector performance, and spray characteristics. The hardware test results of flow and spray have confirmed the numerical modeling accuracy and the spray quality. The spray's average Sauter mean diameter (SMD) is less than 15 microns at 30 mm distance from the nozzle. The DV90, defined as the drop diameter such that 90% of the total liquid volume is in drops of smaller diameter, is less than 40 microns. The maximum penetration is about 70 mm into air at atmospheric pressure. An initial spray slug is not created due to the absence of a sac volume.
Technical Paper

Laser Welding: An Exploratory Study towards Continuous Improvement on Stainless Steel Welding Joints

2009-10-06
2009-36-0330
The utilization of Laser welding process has increased during last years in several areas of industry, due to many benefits that can be achieved with this technology, such as: flexibility, productivity and quality. Thus, the optimization of Laser welding processes has been considered as a “green field” to be explored by Laser manufacturers, automation companies and process/project engineers. Nowadays there are few researches that provide a roadmap for Laser welding processes improvement that approaches both the aspects and characteristics applied to evaluate the Laser weld application performance. Therefore, this paper has per its main purpose through an exploratory study to provide parameters toward continuous improvement of Laser welding process considering both types of Lasers: Laser spot weld and Laser seam weld of stainless steel joints, thus this work may be considered as theoretical and practical reference to be applied by people involved with Laser welding applications.
Technical Paper

Automotive Miniaturization Trend: Challenges for Wiring Harness Manufacturing

2010-10-06
2010-36-0160
One of the most evident trends in automotive sector is miniaturization. It is related to considerable benefits due to the potential of mass reduction, cost reduction and efficiency improvement. It involves many different automobile components and most of them are facing challenges to achieve the targets defined by car makers and final consumers. Specifically for wiring harness, it seems to be many manufacturing and process challenges to be surpassed in order to fully perceive the benefits expected with miniaturization, internally and externally. So this article aims to present an overview of literature as well as reporting of experts on this issue mentioning some of the challenges that global automotive wiring harness manufacturers are facing. Subjects as assembly automation, terminal connection and small gauge cables are discussed in the article and also a general overview of how those problems are being addressed in order to meet customer requirements.
Technical Paper

Characterization of the Dynamic Response of a Cylinder Deactivation Valvetrain System

2001-03-05
2001-01-0669
This paper presents a theoretical and experimental study of a cylinder deactivation valvetrain system for the integration into an Engine Management System (EMS). A control-oriented lumped parameter model of the deactivation valvetrain system is developed and implemented using Matlab/Simulink, and validated by experimental data. Through simulation and experimental data analysis, the effect of operating conditions on the dynamic response is captured and characterized, over a wide range of operating conditions. The algorithm provides a basis for the calibration of the deactivation hardware. The generic characterization of the dynamic response can simplify the calibration parameters for the implementation in engine management systems.
Technical Paper

LIN Bus and its Potential for Use in Distributed Multiplex Applications

2001-03-05
2001-01-0072
The increasing features and complexity of today's automotive architectures are becoming increasingly difficult to manage. Each new innovation typically requires additional mechanical actuators and associated electrical controllers. The sheer number of black boxes and wiring are being limited not by features or cost but by the inability to physically assemble them into a vehicle. A new architecture is required which will support the ability to add new features but also enable the Vehicle Assembly Plants to easily assemble and test each subsystem. One such architecture is a distributed multiplex arrangement that reduces the number of wires while enabling flexibility and expandability. Previous versions have had to deal with issues such as noise immunity at high switching currents. The LIN Bus with its low cost and rail-to-rail capability may be the key enabling technology to make the multiplexed architecture a reality.
Technical Paper

An Analytical Assessment of Rotor Distortion Attributed to Wheel Assembly

2001-10-28
2001-01-3134
The lateral runout of disc brake corner components can lead to the generation of brake system pulsation. Emphasis on reducing component flatness and lateral runout tolerances are a typical response to address this phenomenon. This paper presents the results of an analytical study that examined the effect that the attachment of the wheel to the brake corner assembly could have on the lateral distortion of the rotor. An analysis procedure was developed to utilize the finite element method and simulate the mechanics of the assembly process. Calculated rotor distortions were compared to laboratory measurements. A statistical approach was utilized, in conjunction with the finite element method, to study a number of wheel and brake corner parameters and identify the characteristics of a robust design.
Technical Paper

Instrument Panel Skin Manufactured with 100% Recycled TPO Material

2002-03-04
2002-01-1262
Desiring to push thermoplastic poly-olefin (TPO) technology to its fullest limits and to confirm our position as the leader in the manufacturing of environmentally friendly TPO instrument panels, we have designed a process to manufacture 100% recycled instrument panel skins. This closed-loop process begins with extruding 100% recycled TPO flake into sheet stock to be painted and vacuum formed. The painted sheet is vacuum formed and the offal is ground into regrind flake, ready to be extruded again, thus completing the closed-loop process. This paper will describe a 100% closed loop recycling process for TPO instrument panels, discuss the intense validation process for recycled material and prove the robustness and durability of this interior solution.
Technical Paper

Implications of 3-D Internal Flow Simulation on the Design of Inward-Opening Pressure-Swirl Injectors

2002-10-21
2002-01-2698
A parametric study on the effects of critical injector design parameters of inwardly-opening pressure-swirl injectors was carried out using 3-D internal flow simulations. The pressure variation and the integrated momentum flux across the injector, as well as the flow distributions and turbulence structure at the nozzle exit were analyzed. The critical flow effects on the injector design identified are the swirler efficiency, discharge coefficient, and turbulence breakup effects on the spray structure. The study shows that as a unique class of injectors, pressure-swirl injectors is complicated in fluid mechanics and not sufficiently characterized or optimized. The swirler efficiency is characterized in terms of the trade-off relationship between the swirl-to-axial momentum-flux ratio and pressure drop across the swirler. The results show that swirl number is inversely proportional to discharge coefficient, and that hole diameter and swirler height is the most dominant parameters.
Technical Paper

Six Sigma: Behind The Scenes

2002-11-19
2002-01-3510
Although the Six Sigma [1] concept has become very popular in industrial sectors, very little is said about how to start a successful implementation in a Corporation, or when it should be initiated, and the most important, who should be addressed to lead this task. Its methodologies are widely observed by different sectors of the automotive market, typically focusing in projects with a potential financial impact, following the DMAIC sequence. More than just financial return, this sophisticated tool, has a direct impact on Quality in different levels for both non-productive process and manufacturing process, that eventually would also affect some organizational structures that ultimately can be understood as reengineering.
Technical Paper

Environmentally Friendly Car Wiring System

2002-03-04
2002-01-0595
Legal requirements and responsibility for the environment require improved recyclability of car components. This can be achieved by a reduction in the variety of materials used, which can be separated after use. This is being demonstrated for wiring harnesses using a new hook and loop based fastening system. Easier assembly and disassembly, elimination of fixation holes in the car body, and improved serviceability can lead to considerable cost reductions. Field experience on test cars will be available at a later date.
Technical Paper

Development of Electrical-Electronic Controls for a Gasoline Direct Injection Compression Ignition Engine

2016-04-05
2016-01-0614
Delphi is developing a new combustion technology called Gasoline Direct-injection Compression Ignition (GDCI), which has shown promise for substantially improving fuel economy. This new technology is able to reuse some of the controls common to traditional spark ignition (SI) engines; however, it also requires several new sensors and actuators, some of which are not common to traditional SI engines. Since this is new technology development, the required hardware set has continued to evolve over the course of the project. In order to support this development work, a highly capable and flexible electronic control system is necessary. Integrating all of the necessary functions into a single controller, or two, would require significant up-front controller hardware development, and would limit the adaptability of the electronic controls to the evolving requirements for GDCI.
Technical Paper

Development of an Analytical Tool for Multilayer Stack Assemblies

2011-10-06
2011-28-0083
The development of an analytical model for multilayer stack subjected to temperature change is demonstrated here. Thin continuous layers of materials bonded together deform as a plate due to their differing coefficients of thermal expansion upon subjecting the bonded materials to the change in temperature. Applications of such structures can be found in the electronics industry (the study of warpage issues in printed circuit boards) or in the aerospace industry as (the study of laminated thin sheets used as skin structures for load bearing members such as wings and fuselage). In automotive electronics, critical high-power packages (IGBT, Power FETs) include several layers of widely differing materials (aluminum, solder, copper, ceramics) subjected to wide temperature cyclic ranges. Modeling of such structures by using three-dimensional finite element methods is usually time consuming and may not exactly predict the inter-laminar strains.
Technical Paper

42V Power Supply Systems Impact for Emerging Market Projects

2005-11-22
2005-01-4115
This paper provides a survey about the consequences of a 42V Power Supply System for new vehicle projects, specially, its impact on directed project for Emerging Markets. At a first moment, it will be described new systems and its demand for additional power availability for future projects, such as electrical steering and brake systems; electrical air conditioning compressor; and electrical water and oil pumps. Following this subject, it will be presented possible alternatives for 14/42V Power Supply Systems, and also its impact over Power and Signal Distribution System components, such as connector, terminals, cables, relays, electrical centers, etc. Finally, the previous presented scenarios will be analyzed under a point of view for the Emerging Market demand for such new proposed systems, looking for best alternative driven.
Technical Paper

Zero Resistance Technology (ZRT)

2005-11-22
2005-01-4109
Delphi's Zero Resistance Technology (ZRT) is a revolutionary new product/process that enables the reduction of mass and volume from a traditional wiring assembly. ZRT is defined as a minimal (zero) resistance change over time. The ZRT product is an electrical/electronic connection system which provides a viable solution for high density and limited space wiring applications. The ZRT process is a semi-automated wiring harness manufacturing system with flexibility to produce harnesses to the customer demand.
Technical Paper

Resistance Welding for Automotive Wiring Harness Connection - Small Gauge Cables

2012-10-02
2012-36-0153
Miniaturization is an important trend in many technology segments, once it can enable innovative applications generating new markets. This trend was begun in electronics industry after World War II and has spawned changes into automotive sector also. For Automotive Wiring Harness, miniaturization is clearly presented in most of the components, mainly because of its benefits like the potential of mass reduction, cost reduction and efficiency improvement. Furthermore the main voice of customer points to cable gauge reduction that represents a considerable challenge for connection manufacturing process due to quality control limitations presented by conventional crimp process for 0,35 [mm₂] cables and smaller. According to that, the scope of this article is to present, in details, a manufacturing process optimization for an alternative and more robust technology of joining copper stranded cables to tin brass terminals used on automotive wiring harness, Resistance Welding.
Technical Paper

System Modeling of A Damper Module

2000-03-06
2000-01-0727
A recent trend within the automotive industry has been an emphasis on the development of modular assemblies for future vehicle applications. This trend has created a need for the development of methods to predict the performance of modules within the vehicle environment. In particular, the development of system models that account for the interactions between components within a modular assembly is necessary to insure that a module is properly designed. This paper describes a finite element system model of a damper module as installed in a McPherson strut front suspension. The modeling techniques used to construct the components within the modular assembly are discussed. The results of a study of the structural behavior of a damper module model subjected to quasi-static loading conditions are presented. Additionally, the effects of changes in individual component specifications on the overall system response are considered and the results are displayed.
Technical Paper

Flow Simulation of a Direct-Injection Gasoline Diaphragm Fuel Pump with Structural Interactions

2000-03-06
2000-01-1047
The fluid flow in a direct-injection gasoline diaphragm fuel pump is analyzed using a multi-physics simulation program. The analysis accounts for fully coupled fluid-structure interactions (FSI), the effects of the diaphragm movement and its deformation, the FSI between the diaphragm and the fluid, the FSI between the inlet/outlet valves and the fluid, and the solid-solid contact between the inlet/outlet valves and the valve seats. The flow rate of the fuel pump under various cam speeds is examined. The accuracy of the predictions for the flow rate of the fuel pump is assessed through comparisons with the experimental data, and moderately good agreement is obtained. In addition, some conclusions based on this study are summarized for reference.
Technical Paper

Design and Development of a Mechanical Variable Valve Actuation System

2000-03-06
2000-01-1221
Compromises inherent with fixed valve lift and event timing have prompted engine designers to consider Variable Valve Actuation (VVA) systems for many decades. In recent years, some relatively basic forms of VVA have been introduced into production engines. Greater performance and driveability expectations of customers, more stringent emission regulations set by government legislators, and the mutual desire for higher fuel economy are increasingly at odds. As a solution, many OEM companies are seriously considering large-scale application of higher function VVA mechanisms in their next generation vehicles. This paper describes the continuing development progress of a mechanical VVA system. Design features and operation of the mechanism are explained. Test results are presented in two sections: motored cylinder head test data focuses on VVA system friction, control system performance, valve lift and component stress.
Technical Paper

Disc Brake Corner System Modeling and Simulation

1999-10-10
1999-01-3400
This paper documents the advantages of brake corner system modeling and simulation over traditional component analysis techniques. A better understanding of the mechanical dynamics of the disc-braking event has been gained through brake corner system modeling and simulation. Single component analyses do not consider the load transfer between components during the braking event. Brake corner system analysis clearly quantifies the internal load path and load transfer sequence between components due to clearances or tolerance variations in the brake assembly. By modeling the complete brake corner assembly, the interaction between components due to the contact friction loads and variational boundary conditions can be determined. The end result permits optimal design of brake corner systems having less deflection, lower stress, optimum material mass, and reduced lead-time for new designs.
X