Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Gasoline Direct Injection Compression Ignition (GDCI) - Diesel-like Efficiency with Low CO2 Emissions

2011-04-12
2011-01-1386
A single-cylinder engine was used to study the potential of a high-efficiency combustion concept called gasoline direct-injection compression-ignition (GDCI). Low temperature combustion was achieved using multiple injections, intake boost, and moderate EGR to reduce engine-out NOx and PM emissions engine for stringent emissions standards. This combustion strategy benefits from the relatively long ignition delay and high volatility of regular unleaded gasoline fuel. Tests were conducted at 6 bar IMEP - 1500 rpm using various injection strategies with low-to-moderate injection pressure. Results showed that triple injection GDCI achieved about 8 percent greater indicated thermal efficiency and about 14 percent lower specific CO2 emissions relative to diesel baseline tests on the same engine. Heat release rates and combustion noise could be controlled with a multiple-late injection strategy for controlled fuel-air stratification. Estimated heat losses were significantly reduced.
Journal Article

Analysis of Pre-Crash Data Transferred over the Serial Data Bus and Utilized by the SDM-DS Module

2011-04-12
2011-01-0809
The primary function of an airbag control module is to detect crashes, discriminate and predict if a deployment is necessary, then deploy the restraint systems including airbags and where applicable, pretensioners. At General Motors (GM), the internal term for airbag control module is Sensing and Diagnostic Module (SDM). In the 1994 model year, GM introduced its SDM on some of its North American airbag-equipped vehicles. A secondary function of that SDM and all subsequent SDMs is to record crash related data. This data can include data regarding impact severity from internal accelerometers and pre-crash vehicle data from various chassis and powertrain modules. Previous researchers have addressed the accuracy of both the velocity change data, recorded by the SDM, and the pre-crash data, but the assessment of the timing of the pre-crash data has been limited to a single family of modules (Delphi SDM-G).
Technical Paper

Closed Loop Pressure Control System Requirements and Implementation

2011-04-12
2011-01-0391
Electro-hydraulic actuation has been used widely in automatic transmission designs. With greater demand for premium shift quality of automatic transmissions, higher pressure control accuracy of the transmission electro-hydraulic control system has become one of the main factors for meeting this growing demand. This demand has been the driving force for the development of closed loop pressure controls technology. This paper presents the further research done based upon a previously developed closed loop system. The focus for this research is on the system requirements, such as solenoid driver selection and system latency handling. Both spin-stand and test vehicle setups are discussed in detail. Test results for various configurations are given.
Technical Paper

An Experimental Study on Engine Dynamics Model Based In-Cylinder Pressure Estimation

2012-04-16
2012-01-0896
The information provided by the in-cylinder pressure signal is of great importance for modern engine management systems. The obtained information is implemented to improve the control and diagnostics of the combustion process in order to meet the stringent emission regulations and to improve vehicle reliability and drivability. The work presented in this paper covers the experimental study and proposes a comprehensive and practical solution for the estimation of the in-cylinder pressure from the crankshaft speed fluctuation. Also, the paper emphasizes the feasibility and practicality aspects of the estimation techniques, for the real-time online application. In this study an engine dynamics model based estimation method is proposed. A discrete-time transformed form of a rigid-body crankshaft dynamics model is constructed based on the kinetic energy theorem, as the basis expression for total torque estimation.
Technical Paper

Fluid Dynamic Study of Hollow Cone Sprays

2008-04-14
2008-01-0131
An analytical study of spray from an outwardly opening pressure swirl injector has been presented in this paper. A number of model injectors with varying design configurations have been used in this study. The outwardly opening injection process has been modeled using a modified spray breakup model presented in an earlier study. It has been observed that simulation results from the study clearly capture the mechanism by which an outwardly opening conical spray interacts with the downstream flow field. Velocity field near the tip of the injector shows that the conical streams emanating from an outwardly opening injector have the tendency to entrap air into the flow stream which is responsible for finer spray. A deviation from the optimum set of physical parameters showed a high propensity to produce large spray droplets. This study also emphasizes the importance of computational fluid dynamics (CFD) as an engineering tool to understand the complex physical processes.
Journal Article

Diagnostics based on the Statistical Correlation of Sensors

2008-04-14
2008-01-0129
The paper describes a new strategy for real-time sensor diagnostics that is based on the statistical correlation of various sensor signal pairs. During normal fault-free operation there is a certain correlation between the sensor signals which is lost in the event of a fault. The proposed algorithm quantifies the correlation between sensor signal pairs using real-time scalar metrics based on the Mahalanobis-distance concept. During normal operation all metrics follow a similar pattern, however in the event of a fault; metrics involving the faulty sensor would increase in proportion to the magnitude of the fault. Thus, by monitoring this pattern and using a suitable fault-signature table it is possible to isolate the faulty sensor in real-time. Preliminary simulation results suggest that the strategy can mitigate the false-alarms experienced by most model-based diagnostic algorithms due to an intrinsic ability to distinguish nonlinear vehicle behavior from actual sensor faults.
Technical Paper

SAE Standard Procedure J2747 for Measuring Hydraulic Pump Airborne Noise

2007-05-15
2007-01-2408
This work discusses the development of SAE procedure J2747, “Hydraulic Pump Airborne Noise Bench Test”. This is a test procedure describing a standard method for measuring radiated sound power levels from hydraulic pumps of the type typically used in automotive power steering systems, though it can be extended for use with other types of pumps. This standard was developed by a committee of industry representatives from OEM's, suppliers and NVH testing firms familiar with NVH measurement requirements for automotive hydraulic pumps. Details of the test standard are discussed. The hardware configuration of the test bench and the configuration of the test article are described. Test conditions, data acquisition and post-processing specifics are also included. Contextual information regarding the reasoning and priorities applied by the development committee is provided to further explain the strengths, limitations and intended usage of the test procedure.
Technical Paper

Characterization of a Catalytic Converter Internal Flow

2007-10-29
2007-01-4024
This paper includes a numerical and experimental study of fluid flow in automotive catalytic converters. The numerical work involves using computational fluid dynamics (CFD) to perform three-dimensional calculations of turbulent flow in an inlet pipe, inlet cone, catalyst substrate (porous medium), outlet cone, and outlet pipe. The experimental work includes using hot-wire anemometry to measure the velocity profile at the outlet of the catalyst substrate, and pressure drop measurements across the system. Very often, the designer may have to resort to offset inlet and outlet cones, or angled inlet pipes due to space limitations. Hence, it is very difficult to achieve a good flow distribution at the inlet cross section of the catalyst substrate. Therefore, it is important to study the effect of the geometry of the catalytic converter on flow uniformity in the substrate.
Technical Paper

Controlling Induction System Deposits in Flexible Fuel Vehicles Operating on E85

2007-10-29
2007-01-4071
With the wider use of biofuels in the marketplace, a program was conducted to study the deposit forming tendencies and performance of E85 (85% denatured ethanol and 15% gasoline) in a modern Flexible Fuel Vehicle (FFV). The test vehicle for this program was a 2006 General Motors Chevrolet Impala FFV equipped with a 3.5 liter V-6 powertrain. A series of 5,000 mile Chassis Dynamometer (CD) Intake Valve Deposits (IVD) and performance tests were conducted while operating the FFV on conventional (E0) regular unleaded gasoline and E85 to determine the deposit forming tendencies of both fuels. E85 test fuels were found to generate significantly higher levels of IVD than would have been predicted from the base gasoline component alone. The effects on the weight and composition of IVD due to a corrosion inhibitor and sulfates that were indigenous to one of the ethanols were also studied.
Technical Paper

E-85 Fuel Corrosivity: Effects on Port Fuel Injector Durability Performance

2007-10-29
2007-01-4072
A study was conducted to investigate the effects of commercial E-85 fuel properties on Port Fuel Injector (PFI) durability performance. E-85 corrosivity, not lubricity, was identified as the primary property affecting injector performance. Relatively high levels of water, chloride and organic acid contamination, detected in commercial E-85 fuels sampled in the U.S. in 2006, were the focus of the study. Analysis results and analytical techniques for determining contaminant levels in and corrosivity of commercial E-85 fuels are discussed. Studies were conducted with E-85 fuels formulated to represent worst-case field fuels. In addition to contamination with water, chloride and organic acids, fuels with various levels of a typical ethanol corrosion inhibitor were tested in the laboratory to measure the effects on E-85 corrosivity. The effects of these E-85 contaminants on injector durability performance were also evaluated.
Technical Paper

Improving Cam Phaser Performance Using Robust Engineering Techniques

2005-10-24
2005-01-3903
This paper describes a robust engineering DOE (design of experiment) completed by hydraulic simulation of a Variable Cam Phaser System based on an L4 IC engine. The robust engineering study focused on the high temperature and low speed portions of overall engine operating conditions where the cam phase rates are slow and oscillation is high. The analysis included a preliminary DOE with multiple noise variables used as the control factors in order to quantify and compound the factors into just two noise levels; best and worst conditions. Following the noise DOE, a larger DOE study was completed with 16 control variables including phaser, oil control valve and various engine parameters. It was run at 3 engine rpm (signal levels), 2 noise levels, and was analyzed for 3 responses (advancing rate, retarding rate, and oscillation amplitude while holding an intermediate position). These DOE experiments determined potential gains for each design proposal.
Technical Paper

Development of a Robust Injector Design for Superior Deposit Resistance

2005-10-24
2005-01-3841
A comprehensive investigation into why gasoline fuel injectors fail in the field due to deposit formation has led to the development of a robust fuel injector design. Analysis of field failures provided critical clues as to why fuel injectors form deposits. The development of a repeatable test and a repeatable deposit forming fuel allowed the confirmation of these clues and the testing of design improvements. This combination of test cycle and fuel allowed for a reduced test time while providing sufficient sensitivity to differentiate between injector design improvements. Confirmation of design improvements was completed on a stationary vehicle using both commercially available gasoline and a formulated deposit forming fuel.
Technical Paper

A Systematic Experimental Investigation of Pd-Based Light-Off Catalysts

2005-10-24
2005-01-3848
Close-coupled or manifold catalysts have been extensively employed to reduce emissions during cold start by achieving quick catalyst light-off. These catalysts must have good thermal durability, high intrinsic light-off activity and high HC/CO/NOx conversions at high temperature and flow conditions. A number of studies have been dedicated to engine control, manifold design and converter optimization to reduce cold start emissions. The current paper focuses on the effect of catalyst design parameters and their performance response to different engine operating conditions. Key design parameters such as catalyst formulation (CeO2 vs. non CeO2), precious metal loading and composition (Pd vs. Pd/Rh), washcoat loading, catalyst thermal mass, substrate properties and key application (in use) parameters such as catalyst aging, exhaust A/F ratio, A/F ratio modulation, exhaust temperature, temperature rise rate and exhaust flow rate were studied on engine dynamometers in a systematic manner.
Technical Paper

Sensitivity of Contact Electronic Throttle Control Sensor to Control System Variation

2006-04-03
2006-01-0763
The purpose of this paper is to improve the understanding of the advantages of a non-contact electronic throttle control (ETC) air control valve position sensor over the potentiometer technology of contacting position sensors. The non-contact position sensing offers the industry an opportunity to take advantage of an improved ability to assess reliability of the product and utilize accelerated testing techniques with improved robustness to control system perturbations. Specifically; eliminating the contact wear failure mechanism reduces the complexity, and duration of ETC air control valve life testing and increases the robustness of the ETC system to noise factors from the control system variation.
Technical Paper

Unified Control of Brake- and Steer-by-Wire Systems Using Optimal Control Allocation Methods

2006-04-03
2006-01-0924
A new optimal control strategy for dealing with braking actuator failures in a vehicle equipped with a brake-by-wire and steer-by- wire system is described. The main objective of the control algorithm during the failure mode is to redistribute the control tasks to the functioning actuators, so that the vehicle performance remains as close as possible to the desired performance in spite of a failure. The desired motion of the vehicle in the yaw plane is determined using driver steering and braking inputs along with vehicle speed. For the purpose of synthesizing the control algorithm, a non-linear vehicle model is developed, which describes the vehicle dynamics in the yaw plane in both linear and non-linear ranges of handling. A control allocation algorithm determines the control inputs that minimize the difference between the desired and actual vehicle motions, while satisfying all actuator constraints.
Technical Paper

Control of Brake- and Steer-by-Wire Systems During Brake Actuator Failure

2006-04-03
2006-01-0923
In this paper a method of mitigating the consequences of potential brake actuator failure in vehicles with brake-by-wire (BBW) and possibly with steer-by-wire (SBW) systems is described. The proposed control algorithm is based on rules derived from general principles of vehicle dynamics. When a failure of one actuator is detected, the algorithm redistributes the braking forces among the remaining actuators in such a way that the desired deceleration of vehicle is followed as closely as possible, while the magnitude and the rate of change of the yaw moment caused by asymmetric braking are properly managed. When vehicle is equipped with BBW system only, or when the desired deceleration can be obtained by redistributing of braking forces, without generating an undesired yaw moment, no steering correction is used. Otherwise, a combination of brake force redistribution and steering correction (to counter the yaw moment generated by non-symmetric braking) is applied.
Technical Paper

2-step Variable Valve Actuation: System Optimization and Integration on an SI Engine

2006-04-03
2006-01-0040
2-step variable valve actuation using early-intake valve closing is a strategy for high fuel economy on spark-ignited gasoline engines. Two discrete valve-lift profiles are used with continuously variable cam phasing. 2-step VVA systems are attractive because of their low cost/benefit, relative simplicity, and ease-of-packaging on new and existing engines. A 2-step VVA system was designed and integrated on a 4-valve-per-cylinder 4.2L line-6 engine. Simulation tools were used to develop valve lift profiles for high fuel economy and low NOx emissions. The intake lift profiles had equal lift for both valves and were designed for high airflow & residual capacity in order to minimize valvetrain switching during the EPA drive cycle. It was determined that an enhanced combustion system was needed to maximize fuel economy benefit with the selected valve lift profiles. A flow-efficient chamber mask was developed to increase in-cylinder tumble motion and combustion rates.
Technical Paper

Evaluation of the MADYMO Full FE Human Model in a Rear Impact Simulation of an IndyCar

2006-12-05
2006-01-3659
Computer simulation was used as a complement to crash and injury field data analysis and physical sled and barrier tests to investigate and predict the spinal injuries of a rear impact in an IndyCar. The model was expected to relate the spinal loads to the observed injuries, thereby predicting the probability and location of spinal fractures. The final goal is to help reduce the fracture risk by optimizing the seat and restraint system design and the driver's position using computer modeling and sled testing. MADYMO Full FE Human Body Model (HBM) was selected for use because of its full spinal structural details and its compatibility with the vehicle and restraint system models. However, the IndyCar application imposed unique challenges to the HBM. First, the driver position in a race car is very different from that in a typical passenger car.
Technical Paper

Co-Simulation Platform for Diagnostic Development of a Controlled Chassis System

2006-04-03
2006-01-1058
This paper discusses the development and application of a closed-loop co-simulation platform for a controlled chassis system. The platform is comprised of several software packages, including CarSim®(MSC Corporation), AmeSim®(ImaGine Software Corporation), MATLAB®/SIMULINK®(Mathworks Corporation). The platform provides the ability to quickly evaluate enhancements to existing algorithms and to evaluate new control or diagnostic concepts, making it a rapid medium for development, testing and validation. The co-simulation platform was configured with real vehicle calibration data and used to test the validity/limitations of a simple model-based sensor diagnostics strategy. Using this approach, it was possible to quickly check for performance issues and consider needed corrections or enhancements without incurring the time and cost burden associated with in-vehicle testing.
Technical Paper

Comparison of Load Distributions between Human Occupants and ATDs in Normal and Non-normal Occupant Positions and Postures

2006-04-03
2006-01-1435
In occupant sensing system development, the Anthropomorphic Test Dummy (ATD) and the Occupant Classification ATD (OCATD) are frequently used to simulate live human subjects in the testing and validation of weight based occupant sensing systems. A study was conducted to investigate the range of loading differences between these ATDs and live human subjects over various seating postures and conditions. The results of the study revealed that differences in seat load patterns could be significant, even though both the ATD and live humans are in the same weight and body size categories. Seat loading was measured using Hybrid III (5th percentile female, 50th percentile male, and 3 year old) ATDs, OCATDs (OCATD5 - 5th percentile female, and OCATD6 - 6 yr old child), and a CRABI (12-month old) dummy. Human subjects in the same weight and height categories as the above listed ATDs were also measured.
X