Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Component and System Life Distribution Prediction Using Weibull and Monte Carlo Analysis with Reliability Demonstration Implications for an Electronic Diesel Fuel Injector

2003-03-03
2003-01-1363
This paper presents a methodology to predict component and system reliability and durability. The methodology is illustrated with an electronic diesel fuel injector case study that integrates customer usage data, component failure distribution, system failure criteria, manufacturing variation, and variation in customer severity. Extension to the vehicle system level enables correlation between component and system requirements. Further, this analysis provides the basis to establish a knowledge-based test option for a success test validation program to demonstrate reliability.
Technical Paper

Improving the Reliability of Squeak & Rattle Test

2005-05-16
2005-01-2539
The laboratory test method commonly known as “random vibration” is almost always used for Squeak & Rattle testing in today's automotive applications due to its obvious advantages: the convenience in simulating the real road input, the relatively low cost, and efficiency in obtaining the desired test results. Typically, Loudness N10 is used to evaluate the Squeak & Rattle (S&R) performance. However, due to the nature of random distribution of the excitation input, the repeatability of the loudness N10 measurements may vary significantly. This variation imposes a significant challenge when one is searching for a fine design improvement solution in minimizing S&R noise, such as a six-sigma study. This study intends to investigate (1) the range of the variations of random vibration control method as an excitation input with a given PSD, (2) the possibility of using an alternate control method (“time-history replication”) to produce the vibration of a given PSD for a S&R evaluation.
Technical Paper

Design Process Changes Enabling Rapid Development

2004-10-18
2004-21-0085
This paper will address the electronic development in the wireless industry and compare it to the electronic development in the automotive industry. The wireless industry is characterized by rapid, dramatic high tech changes with a less than two-year cycle time and an equivalent life cycle. The automotive electronics industry is working toward reducing the typical 2 to 3 year development cycle down 1 to 2 years but with a life cycle of 10 years or more. In addition to realizing the electronic development benefits seen in the wireless industry, the automotive industry places significantly more emphasis on the quality and reliability aspects of their designs as many of them are targeted toward, or interface with, safety critical applications. One of the lessons learned from the wireless industry is the development process; where the hardware selection process can be accomplished in a virtual environment in conjunction with concurrent software development.
X