Refine Your Search


Search Results

Viewing 1 to 15 of 15
Journal Article

Injection Nozzle Coking Mechanism in Common-rail Diesel Engine

The hole diameter of injection nozzles in diesel engines has become smaller and the nozzle coking could potentially cause injection characteristics and emissions to deteriorate. In this research, engine tests with zinc-added fuels, deposit analyses, laboratory tests and numerical calculations were carried out to clarify the deposit formation mechanisms. In the initial phase of deposit formation, lower zinc carboxylate formed close to the nozzle hole outlet by reactions between zinc in the fuel and lower carboxylic acid in the combustion gas. In the subsequent growth phase, the main component changed to zinc carbonate close to nozzle hole inlet by reactions with CO₂ in the combustion gas. Metal components and combustion gases are essential elements in the composition of these deposits. One way of removing these deposits is to utilize cavitations inside the nozzle holes.
Technical Paper

Development of Multi-hole Nozzle Injector for Spray-guided DISI Engine

Recently CO₂ emission regulation has become more stringent and higher thermal efficiency of the internal combustion engine is required. Spray-guided gasoline direct injection engine has promising potential for lower fuel consumption. The purpose of this study is to clarify the air-fuel mixture formation requirements and to investigate the spray specification of multi-hole nozzle injector for spray-guided stratified combustion.
Journal Article

Development of an Electronic Resin Throttle Body

The need to improve fuel consumption by saving the weights of automobile parts is growing from the viewpoint of global warming mitigation. In the case of a throttle body for controlling the air flow volume into an engine, it is important to achieve a high dimensional accuracy of the valve-bore gap in the state of closed valve. In fact, most throttle bodies are made of precision-machined metal. Therefore, resin throttle bodies are drawing attention as a lightweight alternate. However, in comparison with metal throttle bodies, resin throttle bodies have two potential disadvantages that should be solved prior to productization. The first one is greater air leakage in the state of closed valve, and the second one is smaller heat conduction for unfreezing the valve in a frigid climate. We have developed an electronic resin throttle body that has overcome the above-mentioned disadvantages.
Technical Paper

Oil Circulation Behavior in Low Temperature CO2 Climate Control Systems

This paper presents the oil circulation behavior in a CO2 climate control system operating at low evaporating temperature down to -32°C. The increase of oil circulation ratio (OCR) from 0 to 6 wt.% during steady state conditions degrades the coefficient of performance and cooling capacity by 15% and 8%, respectively. The pressure drop across the heat exchangers increases, especially in the gas cooler. In low temperature CO2 systems some fluctuations of oil and refrigerant flow rates were observed during cyclic operations when the system did not equip the oil separator, but was observed only at high oil charge when the system did equip the oil separator. These instabilities lead to a periodic compressor performance fluctuation, which caused system performance degradations. Therefore, the use of an oil separator is recommended for the low temperature operation if an ordinary metering valve is adopted as an expansion device without any special control strategy.
Technical Paper

Flow Analysis in Nozzle Hole in Consideration of Cavitation

This paper will focus on fuel flow analysis in nozzles, in particular, in the injection hole, a key component of Fuel Injection Equipment(FIE). Optimum controlled flow in the hole improves flow efficiency and atomization. To meet the emission regulations which will be introduced from the end of '90's to the 21st century, Diesel Engines require FIE to produce higher injection pressure which creates better atomization and higher utilization of air. But higher injection pressure results in increased pump driving torque, larger pump size and higher cost. We have studied the improvement in fuel flow characteristics of the nozzle, using an enlarged flow model and the theoretical analysis method. As a result, we have found that the cavitation, which occurs at the inlet of the hole, is affected by the configuration of the sac hole and injection hole. And, furthermore, the cavitation has a direct effect on the contraction and its recovery flow.
Technical Paper

Development of Plastic Pulley for Automotive Air Conditioner Compressor

The automotive industry has increasingly been focusing its efforts on vehicle part weight reduction, with the aim of improving fuel efficiency as an environmental protection measure. As part of these efforts, the industry has actively been developing plastic pulleys to replace conventional steel pulleys. Of the various pulleys used in vehicles, the air conditioner (A/C) compressor pulley is exposed to the harshest working environment. We therefore investigated towards development of a plastic pulley for A/C compressor application. Required material properties were first identified on the basis of required product characteristic values. As a result, a phenolic resin material was developed that is superior in heat resistance one of the most important properties among those identified. Using the material, we succeeded in developing an A/C compressor plastic pulley, achieving approximately 50% weight reduction compared to conventional steel pulleys.
Technical Paper

A Method for Suppressing Formation of Deposits on Fuel Injector for Direct Injection Gasoline Engine

Our concern was with the phenomenon of the fuel flow rate change in the injector due to deposit formation in the direct injection gasoline engine. The fundamental factors in the deposit formation on the nozzle were investigated, and engine dynamometer tests were performed. It was clarified that the residual fuel in the nozzle hole should be kept in a liquid state so that deposit precursors could be washed away by fuel injections. As a consequence, the nozzle temperature had to be below the 90 vol. % distillation temperature of the fuel, which was the most important index to suppress the deposit formation.
Technical Paper

Development of DL-Pulley for Automotive Air Conditioner Compressor

A new mechanism DL-pulley has been developed to improve the riding quality by avoiding ON/OFF shock caused by turning on/off of the conventional magnetic clutch (MagCl) for the automotive air conditioner (A/C) compressor. DL-pulley was aimed for Dampening compressor torque fluctuation and Limiting torque transfer when the A/C compressor is seized. For its development, high performance sliding material was the key to realize the sliding mechanism of the torque limiting function. Specifically, the friction coefficient of sliding material must be stable in any environment that the automobile is used. This paper describes the development of new structure DL-pulley with sliding mechanism and new sliding material. In the development process, the relationship between stability of friction coefficient and adhesion has been experimentally clarified.
Technical Paper

Development of Fan Spray Simulation for Gasoline Direct Injection Engines

In gasoline direct injection engines it is important to optimize fuel spray characteristics, which strongly affect stratified combustion process. Spray simulation is anticipated as a tool for optimizing nozzle design, but conventional simulation, which is based on experimental data and/or empirical laws regarding spray boundary condition at the nozzle exit, cannot predict the effect of various nozzle geometries on spray characteristics. In Japan, a fan spray injected from a slit type nozzle has recently been adopted for gasoline direct injection engines. This paper proposes a computational model for the fan spray. The structure of two-phase flow inside the nozzle is numerically analyzed using the volume of fluid (VOF) method in a three-dimensional CFD code based on the nozzle geometry. The results of these analyses are applied to classical linear instability theory to calculate fuel droplet mean diameter after primary breakup.
Technical Paper

Development of long life and high ignitability iridium spark plug

From the view of suppressing the global warming and environmental pollution, responding to the regulation of fuel consumption and exhaust gases along with lengthening the maintenance interval, are becoming more demanded. The development of a high-performance, long-life spark plug has become essential in response to these demands. While improved performance (high ignitability and low required voltage), the discharge part of the spark plug needs to be reduced in size. But, in the past this has been difficult because of the limitations of platinum alloys in terms of wear. Therefore, it has been quite difficult to achieve both smaller discharge parts and longer life. To dramatically improve wear resistance, we researched materials that are both resistant to oxidation and have a high melting point. This research resulted in our development of a new iridium alloy (Iridium-10wt%Rhodium).
Technical Paper

Compact Magnetic Solenoid Valves Using a Composite Magnetic Material

The recent progress of electronic control systems in vehicles is remarkable as evidenced by the development of electronic fuel injection systems,(EFI), automatic transmission control systems, and anti-lock brake systems,(ABS). The number of actuators for the systems has been increasing. Consequently, a need has been identified for a reduction in volume and number of the system actuators for control purposes. A composite magnetic material has been developed with the aim of miniaturizing magnetic solenoid valves for actuator applications. A composite magnetic material is such that both ferromagnetic and paramagnetic sections coexist within a single material, and can contribute to optimization of the magnetic circuit of a solenoid valve. This paper describes the development of a composite magnetic material, and its resultant characteristics.
Technical Paper

Influence of Injection Nozzle Improvement on DI Diesel Engine

For improving DI diesel engine performance, such as lower nitrogen oxidant (NOx), particulate molecular (PM) emission and higher output, etc., atomization of the fuel spray plays an important role. In order to obtain better fuel atomization without increasing the fuel injection pressure, increasing the flow velocity at the injection nozzle spray holes is regarded as an effective way. Through experiments, enlarging the chamfer at the spray hole inlet proved to be the most effective and suitable method for establishing high flow velocity injection nozzles. We have compared the high flow velocity injection nozzles with conventional nozzles in terms of injection characteristics and fuel spray characteristics, and confirmed the improved fuel spray atomization with the high flow velocity injection nozzles. Finally the high flow velocity injection nozzles were tested on a medium duty class, natural aspirated DI diesel engine.
Technical Paper

Development of Non-Adhesive Acrylic Rubber for Engine Oil Filter

In recent years, the use of acrylic rubber has grown because of improved low temperature performance and heat resistance. Acrylicrubber is now being adopted as a replacementof NBR because it has good oil and heat resistance. One special feature inherent toacrylic rubber is that if it is in contact withmetal, upon heating, it will adhere to the metal. This adhesion would not be a problem with a fixed O-ring; however, in the case of an oilfilter (O/F) gasket which is regularly changed,the rubber which remains due to adhesion couldbe problematic for sealing. In the past, this problem was overcome by utilizing a coating, such as silicone, on the rubber surface, although this adds another step to the rubber process. Therefore, we developed a new method to prevent the adhesion of acrylic rubber by analyzing the mechanism by which the acrylic rubber adheres to a metal surface.
Technical Paper

Spray Characterization of Gasoline Direct Injection Sprays Under Fuel Injection Pressures up to 150 MPa with Different Nozzle Geometries

Maximum fuel injection pressures for GDI engines is expected to increase due to positive effects on emissions and engine-efficiency. Current GDI injectors have maximum operating pressures of 35 MPa, but higher injection pressures have yielded promising reductions in particle number (PN) and improved combustion stability. However, the mechanisms responsible for these effects are poorly understood, and there have been few studies on fuel sprays formed at high injection pressures. This paper summarizes experimental studies on the properties of sprays formed at high injection pressures. The results of these experiments can be used as inputs for CFD simulations and studies on combustion behavior, emissions formation, and combustion system design. The experiments were conducted using an injection rate meter and optical methods in a constant volume spray chamber. Injection rate measurements were performed to determine the injectors’ flow characteristics.
Technical Paper

Development of a New Injector in Gasoline Direct Injection System

The required fuel spray characteristics, controlled fuel pressure, and injector installation configurations in gasoline direct injection differ among manufacturers. As a result, there are currently a variety of injector types and configurations being proposed by many different component manufacturers. This paper proposes a new injector design that both enables high fuel pressure operation by utilizing a highly efficient electromagnetic valve using a composite magnetic material for the injector actuator, and increases manufacturing productivity while also meeting the requirements of each engine manufacturer by simplifying the construction of the injector.